第1个回答 2022-09-26
问题一:标准差表示什么? 标准差也称均方差,它表示各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数。
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同 。
问题二:标准差和方差反映数据的什么特征 反映的是一组数据的集中与离散程度、波动与稳定状况,一般的标准差和方差越小说明数据越集中、越稳定,反之越础散。当然还要是具体情况而定
问题三:标准差算出来有什么作用吗 标准差是 反应多组数据之间稳定值差异的,与样本多少没有关系,有多少样本就反应多少样本之间的数值的稳定性。
所以,只是反应稳定性而已。
下一个数字不是 9.3加减3.26的范畴
而是说
标准差越大 数组偏差越不稳定,例如你的物理实验结果的标准差太大,超出实验结果允许的误差范围,那么说明你的实验失败了。
理论上,合适合理 的样本数是减小标准差的方法,但是标准差的大小没有物理意义,因为他是用来评价一组数据的稳定性的辅助数据。
不是样本越多标准差越小的,而是越能反映稳定性的真实效果,但是样本太少,会导致标准差失真。
在标准差的应用上还有双重标准差。就是计算标准差的标准差。双重标准差无限趋近于0的时候,就是你的最真实标准差。
五个一般不够的,最简单的实验也基本在10个左右。
应用上主要用在风险资产评估: 金融风险评估,各种实验等
最后举个最简单例子:A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。
问题四:平均差和标准差有什么区别?哪一个更能反映离散程度? 平均差是反应各标志值与算术平均数之间的平均差异,是各个数据与平均值差值的绝对值的平均数;标准差是离均差平方和平均后的方根,更能反映一个数据集的离散程度。
一般统计使用标准差更为广泛,尤其是样本量足够大的情况下,它更能反映数据的离散程度
问题五:方差标准差的意义是什么?它们有何特性 1、方差的意义在于反映了一组数据与其平均值的偏离程度;
2、方差是衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。
3、方差的特性在于:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
4、标准差是方差的算术平方根,意义在于反映一个数据集的离散程度。
问题六:标准差和方差反映数据的什么特征? 10分 ・标准差反应数据的变化幅度,即上下左右波揣的剧烈程度。在统计中可以用来计算某变量值的区间范围(即置信区间)。
・方差:即标准差的平方。
所以,标准差和方差两者没有本质区别。
但是标准差和标准差系数(反应数据发生变化的可能性,即这种变化是否会经常发生。)区别很大。
问题七:标准差和方差反映数据的什么特征 标准差和方差反映数据的分散特征:
标准差和方差的数值越大,那么数据的分散程度越大。