从科学的角度物体的状态有几种

如题所述

第1个回答  2014-05-25
物质的状态,有四种:
1、气态:
没有固定的体积和形状;
2、液态:
有固定的体积,但没有固定的形状,其形状与容器的形状相同;
3、固态:
有固定的体积和形状;
4、等离子态:
元素中的电子从原子中游离出来,成为自由电子。
第2个回答  2015-02-18
  物质是由分子、 原子构成的。通常所见的物质有三态:气态、液态、固态。另外,物质还有“等离子态”、“超临界态”“超固态”以及“中子态”。
  处于气态的物质,其分子与分子之间距离很远,几乎像宇宙空间中的星球那样分散。然而,对于液态物质来说,构成它们的分子彼此已靠得很近,分子一个挨着一个,它的密度要比气态的大得多。拿水中的H2O(水分子)来说,它们就像链条一样,一个接一个构成一条水分子的长链。虽然水分子已经彼此紧靠在一起,但构成水分子的二个氢原子和一个氧原子,它们之间还离得很开。对于固态物质来说,构成元素是以原子状态存在的,而且固体中的原子一个挨着一个,组成一个,“点阵”,就像造房子的脚手架那样,相互攀拉,牢牢地结合在一起,这就是固体比液体硬的原因。气体与液体均可流动,统称为流体;液体和固体又统称为凝聚态。三种状态中,固体虽然结构较复杂,但粒子排布的规律性较强,对它的研究已有了较大的进展;液体的结构最复杂,人们对其认识还很不充分;气体则最为简单,最容易用分子模型进行研究,故对它的研究最多,也最为透彻。
  1、“等离子态”
  原子是由原子核和电子组成的,通常情况下电子都围绕着原子核旋转。然而在几千摄氏度以上的高温中,气态的原子开始抛掉身上的电子,于是带负电的电子开始自由自在地游逛,而原子也成为带正电的离子。温度愈高,气体原子脱落的电子就愈多,这种现象叫做气体的电离化。科学家把电离化的气体,叫做“等离子态”。除了高温以外,用强大的紫外线、X射线和丙种射线来照射气体,也可以使气体转变成等离子态。也许你感到这种等离子态很稀罕吧!其实,在广漠无边的宇宙中,它是最普遍存在的一种形态。因为宇宙中大部分的发光的星球,它们内部的温度和压力都高极了,这些星球内部的物质几乎都处在等离子态。这是物质的第四种状态。处于等离子态的物质,电子与原子核“身首异处”,彼此离开。
  2、“超固态”
  在白矮星里面,压力和温度更高了。在几百吉帕气压的压力下,不但原子之间的空隙被压得消失了,就是原子外围的电子层也都被压碎了,所有的原子核和电子都紧紧地挤在一起,这时候物质里面就不再有什么空隙,这样的物质,科学家把它叫做“超固态”。白矮星的内部就是充满这样的超固态物质。在我们居住着的地球的中心,那里的压力达到350吉帕左右,因此也存在着 一定的超固态物质。
  3、“中子态”
  假如在超固态物质上再加上巨大的压力,那么原来已经挤得 的原子核和电子,就不可能再紧了,这时候原子核只好宣告解散,从里面放出质子和中子。从原子核里放出的质子,在极大的压力下会和电子结合成为中子。这样一来,物质的构造发生了根本的 变化,原来是原子核和电子,现在却都变成了中子。这样的状态,叫做“中子态”。中子态物质的密度更是吓人,它比超固态物质 还要大十多万倍呢!一个火柴盒那么大的中子态物质,重30亿吨,要有960000多台重型火车头才能拉动它!在宇宙中,估计只有少 数的恒星,才具有这种形态的物质。
  现在还没有一个统一的规定.从物理角度为:固态,液态,气态,等离子态,超流态,玻色—爱因斯坦凝聚态、费米子凝聚态。从化学角度为:固态,液态,气态,等离子态,晶体态,胶体态。
  4、固态
  严格地说,物理上的固态应当指“结晶态”,也就是各种各样晶体所具有的状态。最常见的晶体是食盐(化学成份是氯化钠,化学符号是NaCl)。你拿一粒食盐观察(最好是粗制盐),可以看到它由许多立方形晶体构成。如果你到地质博物馆还可以看到许多颜色、形状各异的规则晶体,十分漂亮。物质在固态时的突出特征是有一定的体积和几何形状,在不同方向上物理性质可以不同(称为“各向异性”);有一定的熔点,就是熔化时温度不变。
  在固体中,分子或原子有规则地周期性排列着,就像我们全体做操时,人与人之间都等距离地排列一样。每个人在一定位置上运动,就像每个分子或原子在各自固定的位置上作振动一样。我们将晶体的这种结构称为“空间点阵”结构。
  5、液态
  液体有流动性,把它放在什么形状的容器中它就有什么形状。此外与固体不同,液体还有“各向同性”特点(不同方向上物理性质相同),这是因为,物体由固态变成液态的时候,由于温度的升高使得分子或原子运动剧烈,而不可能再 保持原来的固定位置,于是就产生了流动。但这时分子或原子间的吸引力还比较大,使它们不会分散远离,于是液体仍有一定的体积。实际上,在液体内部许多小的区域仍存在类似晶体的结构——“类晶区”。流动性是“类晶区”彼此间可以移动形成的。我们打个比喻,在柏油路上送行的“车流”,每辆汽车内的人是有固定位置的一个“类晶区”,而车与车之间可以相对运动,这就造成了车队整体的流动。
  6、气态
  液体加热会变成气态。这时分子或原子运动更剧烈,“类晶区”也不存在了。由于分子或原子间的距离增大,它们之间的引力可以忽略,因此气态时主要表现为分子或原子各自的无规则运动,这导致了我们所知的气体特性:有流动性,没有固定的形状和体积,能自动地充满任何容器;容易压缩;物理性质“各向同性”。
  显然,液态是处于固态和气态之间的形态。
  7、非晶态——特殊的固态
  普通玻璃是固体吗?你一定会说,当然是固体。其实,它不是处于固态(结晶态)。对这一点,你一定会奇怪。
  这是因为玻璃与晶体有不同的性质和内部结构。
  你可以做一个实验,将玻璃放在火中加热,随温度逐渐升高,它先变软,然后逐步地熔化。也就是说玻璃没有一个固定的熔点。此外,它的物理性质也“各向同性”。这些都与晶体不同。
  经过研究,玻璃内部结构没有“空间点阵”特点,而与液态的结构类似。只不过“类晶区”彼此不能移动,造成玻璃没有流动性。我们将这种状态称为“非晶态”。
  严格地说,“非晶态固体”不属于固体,因为固体专指晶体;它可以看作一种极粘稠的液体。因此,“非晶态”可以作为另一种物态提出来。
  除普通玻璃外,“非晶态”固体还很多,常见的有橡胶、石蜡、天然树脂、沥青和高分子塑料等。
相似回答