多普勒扩展和多普勒频移

如题所述

第1个回答  2022-11-11
1. 多普勒频移小知识(什么叫多普勒频移)
多普勒频移小知识(什么叫多普勒频移) 1.什么叫多普勒频移
多普勒频移

多普勒效应是为纪念Christian Doppler而命名的,他于1842年首先提出了这一理论。

他认为声波频率在声源移向观察者时变高,而在声源远离观察者时变低。一个常被使用的例子是火车,当火车接近观察者时,其汽鸣声会比平常更刺耳。你可以在火车经过时听出刺耳声的变化。同样的情况还有:警车的警报声和赛车的发动机声。

多普勒效应

把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你之前的每一个脉冲都比你站立不动是更接近你自己。而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。

多普勒效应不仅仅适用于声波,它也适用于所有类型的波形,包括光波。科学家Edwin Hubble使用多普勒效应得出宇宙正在膨胀的结论。他发现远处银河系的光线频率在变高,即移向光谱的红端。这就是红色多普勒频移,或称红移。若银河系正移向他,光线就成为蓝移。

在卫星移动通信中,当飞机移向卫星时,频率变高,远离卫星时,频率变低,而且由于飞机的速度十分快,所以我们在卫星移动通信中要充分考虑“多普勒效应”。另外一方面,由于非静止卫星本身也具有很高的速度,所以现在主要用静止卫星与飞机进行通信,同时为了避免这种影响造成我们通信中的问题,我们不得不在技术上加以各种考虑。也加大了卫星移动通信的复杂性。
2.多普勒频移是怎么形成的
多普勒效应

当你站在公路旁,留意一辆快速行驶汽车的引擎声音,你会发现在它向你行驶时声音的音调会变高(即频率变高),在它离你而去时音调会变得低些(即频率变低)。这种现象叫做多普勒效应。在光现象里同样存在多普勒效应,当光源向你快速运动时,光的频率也会增加,表现为光的颜色向蓝光方向偏移(因为在可见光里,蓝光的频率高),即光谱出现蓝移;而当光源快速离你而去时,光的频率会减小,表现为光的颜色会向红光方向偏移(因为在可见光里,红光的频率低),即光谱出现红移。

在进一步研究多谱勒效应之前,先让我们了解一下有关波的基本知识:

如果我们将一个小石块投入平静的水面,水面上会产生阵阵涟漪,并不断地向前传播。这时波源处的水面每振动一次,水面上就会产生一个新的波列。

设波源的振动周期为T,即波源每隔时间T振动一次,则水面上两个相邻波列之间的距离就为VT,其中V是波在水中的传播速度。在物理学中我们把这一相邻波列之间的距离称为波长,用符号λ表示。这样,波的波长、波速及振动周期三者的关系就可表示为:λ=VT (1)

由于波源振动一次所需的时间为T,则波源在单位时间内振动的次数就为1/T。物理学上,把波源在单位时间内振动的次数称为波的频率,用f表示。这样,它和周期的关系就可表示为f=1/T, 或T=1/f (2)

综合(1)式和(2)式可得:λ=VT=V/f (3)

此式是我们讨论与波有关问题的基本公式,虽然是对水波的传播总结出来的,但它对一切波都适用。

实验研究表明:对于确定的介质,波的传播速度V是一个定值。所以,当波在某一确定的介质中传播时,它的波长λ与它的周期成正比(与频率成反比)。即波的频率越高,周期越小,其波长越短;反之,波的频率越低,周期越大,其波长越长。

对声波而言,声音的频率决定着声音的音调。即声波的频率越高,声波的音调也越高,声音也越尖、越细,甚至越刺耳。根据上述的结论,产生高音的声源振动较慢,振动周期长,对应声波的波长也较长。例如:10000Hz的声波的波长是100Hz声波波长的1/100。

而在可见光中,光波的频率决定着色光的颜色。频率由低到高依次对应红、橙、黄、绿、蓝、靛、紫。其中红光频率最低,波长最长;紫光的频率最高,但波长最短。

下面我们就结合以上的背景知识一起来探究一下有关光的多谱勒效应:

假设有个光源每隔时间T发出一个波列,即光源的周期为T。如图,当它静止时相邻两个波列时间间隔为 T,距离间隔为 λ=cT

式中c表示光速。

当光源以速度V离开观察者时,在每两个相邻的波列之间的时间里光源移动的距离为VT,于是下一个波峰到达观察者所需的时间便增加了VT/c,所以,相邻的两个波峰到达观察者那里所需的时间就为:

T'=T+VT/c>T

即这时相对于观察者而言,光波的周期变长了,频率变低了。根据上面关于频率于光色之间的关系可知,次光的颜色会向红光偏移。物理学上,把这一现象称为红移。

这时到达观察者那里的两个相邻的波列的距离,即波长就变为 λ'=cT+VT

即波长变长了。这两个波长的比值为 λ'/λ= T'/T=1+V/c

即波长增加了V/c,我们把这个相对增加量就成为红移量,它取决于光源的远离速度。由于一般情况下V
3.多普勒频移的物理现象
多普勒频移,当运动在波源后面时,会产生相反的效应。波长变得较长,频率变得较低 (红移red shift)。波源的速度越高,所产生的效应越大。根据光波红(蓝)移的程度,可以计算出波源循着观测方向运动的速度

多普勒频移及信号幅度的变化等如图2所示。当火车迎面驶来时,鸣笛声的波长被压缩(如图2右侧波形变化所示),频率变高,因而声音听起来尖利刺耳。当火车远离时,声音波长就被拉长(如图2左侧波形变化所示),频率变低,从而使得声音听起来减缓且低沉。

这种现象也存在于其他类型的波中,例如光波和电磁波。科学家们观察发现,从外太空而来的光波,其频率在不断变低,既向频率较低的红色波段靠拢,这是光波遵从多普勒效应从而引起多普勒频移的例证。对于电磁波,高度运动的物体上(例如高铁)进行无线通信,会出现信号质量下降等现象,就是电磁波存在多普勒频移现象的实例。

多普勒频移导致无线通信中发射和接收的频率不一致,从而使得加载在频率上的信号无法正确接收,甚至无法接收到。 把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你每走一步时,面前的声源发出的脉冲相对于你的传播距离比你站立不动时近了一步,而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。

所谓多普勒效应就是当发射源与接收体之间存在相对运动时,接收体接收的发射源发射信息的频率与发射源发射信息频率不相同,这种现象称为多普勒效应,接收频率与发射频率之差称为多普勒频移。声音的传播也存在多普勒效应,当声源与接收体之间有相对运动时,接收体接收的声波频率f'与声源频率f存在多普勒频移Δf(doppler shift)即

Δf=f'-f

当接收体与声源相互靠近时,接收频率f'大于发射频率f即:Δf>0

当接收体与声源相互远离时,接收频率f'小于发射频率 即: Δf<0

可以证明若接收体与声源相互靠近或相互远离的速度为v,声速为c,则接收体接收声波的多普勒频率为:

f'= f·(c+-v1)/(c-+v2)

括号中分子和分母的加、减运算分别为“接近”和“远离”之意。

多普勒频移最基本的计算公式是:

例如在一个运动速度为100 km/h的列车上,使用GSM 900 MHz的手机进行通话,假设发射频率为900 MHz,则最大的多普勒频移为fm=100000/3600/300*900*1=83 Hz,此时列车移动的方向与无线电波发射的方向一致。如果列车运动的方向与发射方向成90°角,则无多普勒频移,夹角在两者之间时,为0~83 Hz的范围值。如列车移动方向与无线电波发射的方向相反或呈90°~180°角,则频移为负值,范围为-83 Hz~0。无线通话中频率误差的标准一般为0.05 ppm,即百万分之0.05,则900 MHz允许的频率误差为900*0.05=45 Hz。

从而可以看出,列车运动时通话的接收频率的误差经常会超过频率误差,多普勒频移已经影响到了通话质量。因此消除或降低多普勒频移对无线通信的影响,是高速运动中进行无线通信必须解决的问题。解决这个问题通常采用的方法是:估算多普勒频移,并对估算的频率偏差进行补偿。尤其是多普勒效应影响非常大的水中无线通信,业界和学术界已经有很多研究成果,采用的方法大多都是通过某些算法进行多普勒频移的消除或补偿。 当移动台以恒定的速率v在长度为d,端点为X和Y的路径上运动时收到来自远端源S发出的信号,如下图所示。

无线电波从源S出发,在X点与Y点分别被移动台接收时所走的路径差为:

由于路径差造成的接收信号相位变化值为:

由此可得出频率变化值,即多普勒频移为:

由此可知,多普勒频移与移动台运动速度及移动台运动方向以及无线电波入射方向之间的夹角有关。若移动台朝向入射波方向移动,则多普勒频移为正,导致接收频率上升。若移动台背向入射波方向运动,则多普勒频移为负,接收频率下降。信号经不同方向传播,其多径分量造成接收机的多普勒扩散,因而增加了信号带宽。
相似回答