关于相对论时间的问题

时间可以分成二种。相对时间和绝对时间。当两地的距小于300000千米的时候.时间就是绝对时间,两地的距大于300000千米的时候,时间就是相对时间,请问这句话是对还是错,为什么? ............请知道为什么才答...不知者不答......如果知道相对论的教授或高手请加我。因为我有很多问题,谢谢。

狭义相对论公式及证明

单位 符号 单位 符号
坐标 m (x,y,z) 力 N F(f)
时间 s t(T) 质量 kg m(M)
位移 m r 动量 kg*m/s p(P)
速度 m/s v(u) 能量 J E
加速度 m/s^2 a 冲量 N*s I
长度 m l(L) 动能 J Ek
路程 m s(S) 势能 J Ep
角速度 rad/s ω 力矩 N*m M
角加速度 rad/s^2 α 功率 W P

一、牛顿力学(预备知识)

1.质点运动学基本公式:(1)v=dr/dt,r=r0+∫rdt
(2)a=dv/dt,v=v0+∫adt
(注:两式中左式为微分形式,右式为积分形式)
当v不变时,(1)表示匀速直线运动。
当a不变时,(2)表示匀变速直线运动。
只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。

2.质点动力学:
(1)牛顿第一定律:不受力的物体做匀速直线运动。
(2)牛顿第二定律:物体加速度与合外力成正比与质量成反比。
F=ma=mdv/dt=dp/dt
(3)牛顿第三定律:作用力与反作与力等大反向作用在同一直线上。
(4)万有引力定律:两质点间作用力与质量乘积成正比,与距离平方成反比。
F=GMm/r^2,G=6.67259*10^(-11)m^3/(kg*s^2)
动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)
动量守恒:合外力为零时,系统动量保持不变。
动能定理:W=∫Fds=Ek2-Ek1(合外力的功等于动能的变化)
机械能守恒:只有重力做功时,Ek1+Ep1=Ek2+Ep2
(注:牛顿力学的核心是牛顿第二定律:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛顿第二定律可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛顿第二定律可知物体的受力情况。)

二、狭义相对论力学
(注:γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度。)

1.基本原理:(1)相对性原理:所有惯性系都是等价的。
(2)光速不变原理:真空中的光速是与惯性系无关的常数。

(此处先给出公式再给出证明)
2.洛仑兹坐标变换:
X=γ(x-ut)
Y=y
Z=z
T=γ(t-ux/c^2)

3.速度变换:
V(x)=(v(x)-u)/(1-v(x)u/c^2)
V(y)=v(y)/(γ(1-v(x)u/c^2))
V(z)=v(z)/(γ(1-v(x)u/c^2))

4.尺缩效应:△L=△l/γ或dL=dl/γ

5.钟慢效应:△t=γ△τ或dt=dτ/γ

6.光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)
(光源与探测器在一条直线上运动。)

7.动量表达式:P=Mv=γmv,即M=γm

8.相对论力学基本方程:F=dP/dt

9.质能方程:E=Mc^2

10.能量动量关系:E^2=(E0)^2+P^2c^2

(注:在此用两种方法证明,一种在三维空间内进行,一种在四维时空中证明,实际上他们是等价的。)

三、三维证明

1.由实验总结出的公理,无法证明。

2.洛仑兹变换:
设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。
可令
x=k(X+uT) (1).
又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K.
故有
X=k(x-ut) (2).
对于y,z,Y,Z皆与速度无关,可得
Y=y (3).
Z=z (4).
将(2)代入(1)可得:x=k^2(x-ut)+kuT,即
T=kt+((1-k^2)/(ku))x (5).
(1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时,由重合点发出一光信号,则对两系分别有x=ct,X=cT.
代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得:
k=1/sqr(1-u^2/c^2)=γ.将γ反代入(2)(5)式得坐标变换:
X=γ(x-ut)
Y=y
Z=z
T=γ(t-ux/c^2)

3.速度变换:
V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))
=(dx/dt-u)/(1-(dx/dt)u/c^2)
=(v(x)-u)/(1-v(x)u/c^2)
同理可得V(y),V(z)的表达式。

4.尺缩效应:
B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ

5.钟慢效应:
由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T.
(注:与坐标系相对静止的物体的长度、质量和时间间隔称固有长度、静止质量和固有时,是不随坐标变换而变的客观量。)

6.光的多普勒效应:(注:声音的多普勒效应是:ν(a)=((u+v1)/(u-v2))ν(b).)
B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为
△t(a)=γ△t(b) (1).
探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则
△t(N)=(1+β)△t(a) (2).
相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即
ν(b)△t(b)=ν(a)△t(N) (3).
由以上三式可得:
ν(a)=sqr((1-β)/(1+β))ν(b).

7.动量表达式:(注:dt=γdτ,此时,γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c)
牛顿第二定律在伽利略变换下,保持形势不变,即无论在那个惯性系内,牛顿第二定律都成立,但在洛伦兹变换下,原本简洁的形式变得乱七八糟,因此有必要对牛顿定律进行修正,要求是在坐标变换下仍保持原有的简洁形式。
牛顿力学中,v=dr/dt,r在坐标变换下形式不变,(旧坐标系中为(x,y,z)新坐标系中为(X,Y,Z))只要将分母替换为一个不变量(当然非固有时dτ莫属)就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv.这就是相对论力学的基本量:相对论动量。(注:我们一般不用相对论速度而是用牛顿速度来参与计算)

8.相对论力学基本方程:
由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛顿第二定律的形式完全一样,但内涵不一样。(相对论中质量是变量)

9.质能方程:
Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv
=Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2
=Mv^2+Mc^2(1-v^2/c^2)-mc^2
=Mc^2-mc^2
即E=Mc^2=Ek+mc^2

10.能量动量关系:
E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2
四、四维证明:

1.公理,无法证明。

2.坐标变换:由光速不变原理:dl=cdt,即dx^2+dy^2+dz^2+(icdt)^2=0在任意惯性系内都成立。定义dS为四维间隔,
dS^2=dx^2+dy^2+dz^2+(icdt)^2 (1).
则对光信号dS恒等于0,而对于任意两时空点的dS一般不为0。dS^2>0称类空间隔,dS^2<0称类时间隔,dS^2=0称类光间隔。相对论原理要求(1)式在坐标变换下形式不变,因此(1)式中存在与坐标变换无关的不变量,dS^2dS^2光速不变原理要求光信号在坐标变换下dS是不变量。因此在两个原理的共同制约下,可得出一个重要的结论:dS是坐标变换下的不变量。
由数学的旋转变换公式有:(保持y,z轴不动,旋转x和ict轴)
X=xcosφ+(ict)sinφ
icT=-xsinφ+(ict)cosφ
Y=y
Z=z
当X=0时,x=ut,则0=utcosφ+ictsinφ
得:tanφ=iu/c,则cosφ=γ,sinφ=iuγ/c反代入上式得:
X=γ(x-ut)
Y=y
Z=z
T=γ(t-ux/c^2)

3.4.5.6.略。

7.动量表达式及四维矢量:(注:γ=1/sqr(1-v^2/c^2),下式中dt=γdτ)
令r=(x,y,z,ict)则将v=dr/dt中的dt替换为dτ,V=dr/dτ称四维速度。
则V=(γv,icγ)γv为三维分量,v为三维速度,icγ为第四维分量。(以下同理)
四维动量:P=mV=(γmv,icγm)=(Mv,icM)
四维力:f=dP/dτ=γdP/dt=(γF,γicdM/dt)(F为三维力)
四维加速度:ω=/dτ=(γ^4a,γ^4iva/c)
则f=mdV/dτ=mω

8.略。

9.质能方程:
fV=mωV=m(γ^5va+i^2γ^5va)=0
故四维力与四维速度永远“垂直”,(类似于洛伦兹磁场力)
由fV=0得:γ^2mFv+γic(dM/dt)(icγm)=0(F,v为三维矢量,且Fv=dEk/dt(功率表达式))
故dEk/dt=c^2dM/dt即∫dEk=c^2∫dM,即:Ek=Mc^2-mc^2
故E=Mc^2=Ek+mc^2

10.略。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2014-03-01
在狭义相对论中,相互作匀速直线运动的惯性系间观察到对方的时间变慢这一效应是相互的;所以当A、B存在相对运动时,都会观察到对方时间变慢,但这并不矛盾,因为它们是在不同参照系中的观测结果,所以具有相对性,不能脱离参照系直接进行比较--相对论本来就是认为时间和空间随参照系不同而不同;
但一旦B停下来,它将经历减速过程,受到惯性力的作用,这等效于引力作用,会使B时间变慢;而A未变速,不受变速力作用,时间均匀流逝,于是总的效果就是B的时间比A的慢。
引力造成的时间变慢是永久性的、全局性的,不能通过局部坐标变换消除掉,但可以通过对钟来实际观测到;而狭义相对论的时间变慢是非永久性的、局部的,可以通过坐标变换消除掉,但是不能直接把不同坐标系中得到的结论进行比较。
第2个回答  2008-12-10
你这个定义没有理论支持,无法说明这样分有什么用处。
爱因斯坦认为时间是相对的,每个参照系有自己的时间,除非经过测量,否则无法进行两个参照系的时间对比。
经典理论认为时间和距离是绝对的,各参照系测量结果相同,速度是相对的,各参照系可以不同。
第3个回答  2008-12-10
按我的猜想,大于300000千米,一秒时间要从一端到另一端,速度就大于光速了
嘿嘿,所以要是在你出发的地点放个钟,你会发现它是不走的,或则再倒退。
自己想的。。。
第4个回答  2013-12-07
衡量时间必须在同一个参照系里,就是说,你在车站,车站静止,火车运动,那么火车的时间变慢。如果你在火车上,那么就是你相对火车静止,车站的时间变慢。总之,你要判断时间,必须先选定你所在的参考系。
我说过了,不能笼统的说哪里的快,要取决于你所在的参考系,只要参考系不同,任何同时的事件都可能不同时了。这就是相对论特有的同时性要求。
这么说都不明白我就没辙了。
相似回答