D4=a11A11+a12A12+a13A13+a14A14=a11M11-a12M12+a13M13-a14M14。
由对角线关系可知,在每一次所得的乘积中,每一个元素只能有两条线经过,所以一个元素只能在两个乘积中出现,共作三次图表,可以得六项含有该元素。
在n阶行列式中,当首选某一个元素为某一展开项中的元素时,其余元素的选择只能从余下的n-1阶子式中去选择n-1个元素组成该项,方法有(n-1)!种。对于四阶行列式而言有(4-1)!=6种,所以按上述方法展开后共有24项。
扩展资料:
注意事项:
四阶行列式的计算首先要降低阶数。对于n阶行列式A,可以采用按照某一行或者某一列展开的办法降阶,一般都是第一行或者第一列。因为这样符号好确定。这是总体思路。
如果行列式右上角区域处0比较多”或通过交换行列式两行(或两列)能够将行列化成第七节课所说的分块形式则用分块法计算行列式,即通过利用Krj+ri和Kcj+ci的性质和交换两行两列的方法将行列式化成分块形式计算行列式。
参考资料来源:百度百科-行列式