钐-钕法同位素年龄分析流程

如题所述

方法提要

氢氟酸+高氯酸溶样。化学分离分两步进行,首先在阳离子树脂交换柱上分离总稀土元素,然后采用离子交换法或萃取色层法从总稀土元素中分出钕、钐。热电离质谱计(TIMS)上测出试样的143Nd/144Nd比值,同位素稀释法测定钐、钕含量(目的是测147Sm/144Nd比值),最小二乘拟合计算等时线年龄,同时给出钕同位素初始比值,或仅计算单个试样的钕模式年龄。高精度的同位素分析和测定等时线年龄时合理选择试样,是测定工作成败的关键。

本方法对测定精度要求,147Sm/144Nd比值相对误差0.5%~1%,143Nd/144Nd比值相对误差1×10-5~3×10-5,等时线年龄在100~1000Ma内,95%置信度,相对误差小于2%~5%。

仪器装置和器皿

热电离质谱计MAT260、MAT261、MAT262、VG354、TRITON等相当类型。

点焊机质谱计的配套设备。

质谱计灯丝预热装置质谱计的配套设备。

聚四氟乙烯烧杯10mL与30mL。

氟塑料(F46)试剂瓶500mL、1000mL与2000mL。

聚乙烯塑料洗瓶250mL、500mL、1000mL。

氟塑料(F46)滴瓶30mL。

氟塑料(F46)烧杯30mL、50mL与250mL。

氟塑料(F46)对口双瓶亚沸蒸馏器1000mL。

石英试剂瓶2000mL。

石英亚沸蒸馏器。

石英减压亚沸蒸馏器。

石英交换柱内 径6mm,高300mm,上部接内径20mm高110mm敞口容器,尾端内嵌石英筛板,要求上面的树脂不泄漏,溶液滴速适当,树脂床直径6mm,高100mm,13或16支为一组,用于总稀土元素分离。

石英交换柱 内径2mm,高350mm,上部接内径16mm高50mm小口容器,尾端内嵌氟塑料筛板,要求上面的树脂不泄漏,溶液滴速适当,树脂床直径2mm,高300mm,13或16支为一组,用于α-HIBA离子交换分离。

石英交换柱 内径8mm,高180mm,上部接内径20mm高60mm敞口容器,尾端内嵌石英筛板,要求上面的树脂不泄漏,溶液滴速适当,树脂床直径8mm,高100mm,13或16支为一组,用于萃取色层法钕、钐分离。

石英交换柱 内径30mm,高400mm,上接敞口容器,下端塞聚四氟乙烯纤维,用于阳离子树脂的预处理。

氟塑料(PFA)密封溶样器 15mL。

高压釜 包括30mL聚四氟乙烯闷罐、热缩套、不锈钢外套。

石英滴管。

石英量筒(杯)10mL、50mL。

硬脂玻璃量筒1000mL。

三角玻璃瓶250mL。

玻璃烧杯3000mL。

水纯化系统。

分析天平感量0.00001mg。

酸度计测量精度pH±0.02。

磁力搅拌机。

电热板(温度可控)。

超声波清洗器。

不锈钢恒温烘箱<300℃。

高速离心机。

聚乙烯或石英离心管。

干燥器。

微量取样器10μL与50μL。

器皿清洗

所有使用的氟塑料与石英器皿,用(1+1)优级纯盐酸和优级纯硝酸先后在电炉上于亚沸状态下各煮2h,去离子水冲洗后又用去离子水煮沸1h,再用超纯水一只只冲洗,超净工作柜中电热板上烤干。第一次使用的新器皿在用酸煮沸前,需先用洗涤剂擦洗。

试剂与材料

去离子水二次蒸馏水再经Milli-Q水纯化系统纯化。

超纯水去离子水经石英蒸馏器蒸馏。

超纯盐酸用(1+1)优级纯盐酸经石英蒸馏器亚沸蒸馏纯化,实际浓度用氢氧化钠标准溶液标定。进一步用超纯水配制为需求浓度。

超纯硝酸用(1+1)优级纯硝酸经石英蒸馏器亚沸蒸馏纯化,实际浓度用氢氧化钠标准溶液标定。进一步用超纯水配制为需求浓度。

超纯氢氟酸用优级纯氢氟酸经对口氟塑料(F46)双瓶亚沸蒸馏器制备。

超纯高氯酸用优级纯高氯酸经石英蒸馏器减压亚沸蒸馏制备。

丙酮优级纯。

无水乙醇分析纯。

超纯氢氧化铵用高纯氢氧化铵在密封干燥器中平衡法制备。

200~400目AG50×8或Dowex50×8强酸性阳离子交换树脂,或其他性能相似、性能更好的树脂。

α-羟基异丁酸(α-HIBA)分析纯。

二-2-乙基己基正膦酸(HDEHP,P204)分析纯。

P204(HDEHP)萃淋树脂。

P507(HEHEHP)萃淋树脂。

聚四氟乙烯粉末。

200~400目AG1×8或Dowex1×8强碱性阴离子交换树脂。

铀试剂Ⅲ(偶氮胂Ⅲ)溶液(wB=0.08%)用分析纯固体铀试剂Ⅲ与超纯水配制。

145Nd或146Nd稀释剂富集145Nd或146Nd同位素的固体氧化钕(Nd2O3)。

149Sm或147Sm稀释剂富集149Sm或147Sm同位素的固体氧化钐(Sm2O3)。

145Nd(或146Nd)+149Sm(或147Sm)混合稀释剂溶液溶液配制与浓度标定见附录86.3A。

普通氧化钕(Nd2O3)光谱纯基准物质,保存在干燥器中。

普通氧化钐(Sm2O3)光谱纯,基准物质,保存在干燥器中。

GBW04419全岩,钐-钕法国家一级标准物质。

实验室专用薄膜(Parafilm)。

超纯硝酸c(HNO3)=3.5mol/L用高浓度超纯硝酸和超纯水配制。

铼带规格18mm×0.03mm×0.8mm

试样分解

操作程序分两种情况:①钐、钕含量的稀释法测定(ID)和钕同位素组成(IC)测定,分别称样、溶样。②一次称样、溶样,但是在试样完全分解后将溶液分成ID和IC两个分样。前者适用于均匀性好的试样,后者多用于均匀性差的试样。

1)当分别溶样时,ID测定是在PFA密封溶样器中称取0.05g(精确至0.00001g)粉末样,按最佳稀释度要求加0.1~0.15g145Nd+149Sm混合稀释剂溶液(精确至0.00001g),轻微晃动使试样充分散开,加5mL左右超纯氢氟酸和几滴超纯高氯酸;IC测定是在PFA密封溶样器中称取0.1~0.2g粉末样,加5~8mL超纯氢氟酸和几滴超纯高氯酸,在大量酸加入前先加入少量,同样轻微地晃动使试样充分散开。紧密盖上溶样器盖子,置于电热板上于150℃温度下加热分解,在加热过程中也需要经常轻微摇动溶样器,加速试样分解。当试样完全分解后打开盖子蒸干溶液,升高电热板温度(180℃左右)赶尽多余氢氟酸和高氯酸,用2mL6mol/L超纯盐酸淋洗溶样器内壁,蒸干,再用5mL2.5mol/L超纯盐酸溶解干涸物,此时溶液很清亮,准备上柱。如果溶液出现浑浊或残渣需进行离心分离,取上部清液上柱。

2)当ID、IC测定采用一次溶样时,先称取0.2g(精确至0.00001g)粉末样,以后的试样分解过程与前面程序相同。在试样完全分解、被处理成5mL左右的清液后,在天平上大致按1∶2的比例将溶液分成ID和IC两个分样,分别称量(精确至0.00001g),再在ID分样中大约加入0.1g~0.15g145Nd+149Sm混合稀释剂溶液(精确至0.00001g),轻微晃动放置过夜,准备上柱(IC分样不加稀释剂)。

根据岩石化学特征,当预计试样中的稀土元素含量较高时(如碱性岩)可以酌情减少试样量。超镁铁质岩的稀土元素含量一般很低,特别是地幔橄榄岩,钐、钕含量常常在10-7~10-8级。对于这一类试样的溶样问题推荐以下程序:采用30mL高压釜将试样称量增大至2~4g,氢氟酸+高氯酸溶样,蒸干,1mol/L盐酸溶解干涸物,加氢氧化铵使稀土元素与氢氧化铁共沉淀,离心分离除去溶液留下沉淀物,2.5mol/LHCl溶解沉淀物,溶液待上柱。这一程序可以在离子交换分离之前将试样溶液的体积减小1/10,而钐、钕含量增加了10~20倍(达到10-6级),同时本底没有明显增加。

Sm-Nd化学分离

钐、钕化学分离分两步进行,第一步分离总稀土元素,第二步分离钐和钕。

1)总稀土元素分离。

a.阳离子树脂交换柱准备。首次使用的200~400目AG50×8或Dowex50×8阳离子树脂盛于石英烧杯中(约200g),无水乙醇浸泡24h,倾出乙醇晾干后用去离子水漂洗,再用(1+1)优级纯盐酸浸泡24h,转入30mm×400mm大型专用石英柱中,继续用(1+1)优级纯盐酸淋洗直至无铁离子[硫氰化铵(NH4CNS)检验,洗出液不再显红色],最后用超纯水淋洗,转入用于总稀土元素分离的(6mm×300mm)石英柱中,树脂床高100mm,直径6mm,待水淋干后依次加30mL6mol/L超纯盐酸淋洗,10mL2.5mol/L超纯盐酸平衡,待用。以后继续使用时,依次用30mL超纯水分多次淋洗交换柱内壁,30mL6mol/L超纯盐酸回洗,10mL2.5mol/L超纯HCl平衡。

b.上柱分离。将分解完全的试样溶液倒入备好的阳离子树脂交换柱中,待溶液漏完先用5mL2.5mol/L超纯盐酸分多次淋洗管壁,然后加40mL2.5mol/L超纯盐酸淋洗钾、钠、钙、镁、铁、铝等干扰元素,最后用15mL6mol/L超纯盐酸洗脱总稀土元素,下用30mL聚四氟乙烯烧杯接收,电热板上蒸干,待下步分离。

2)Sm-Nd分离。从总稀土元素中分离钕和钐有离子交换法和萃取色层法等多种方法。

a.α-HIBA离子交换法。本方法是个较老的方法,采用铵化阳离子树脂,淋洗液为pH值~4.6、浓度为0.23mol/L左右的α-羟基异丁酸(α-HIBA)。

a)阳离子树脂柱准备。选择200目~400目AG50×8阳离子树脂(约300g)于石英烧杯中(Dowex50×8树脂在粒度均匀性与纯度方面较AG50×8为差,如经过筛选也可用,两者交换性能一样),无水乙醇和(1+1)优级纯盐酸依次各浸泡24h,转入大型专用石英柱中(同上),继续用(1+1)优级纯盐酸淋洗,直至洗尽铁离子[硫氰化铵(NH4CNS)检验,洗出液不再显红色],超纯水淋洗至中性,完全除去Cl-离子[硝酸银(AgNO3)检测,洗出液不再呈现乳白色浑浊物],加稀的超纯氢氧化铵淋洗,至洗出液呈碱性(pH试纸检验),表明阳离子树脂全部铵化。转入500mL试剂瓶,保存在0.23mol/LpH=4.6左右的α-羟基异丁酸溶液中,供长期使用。

b)α-羟基异丁酸溶液配制与pH值调节。称取70g固体分析纯α-羟基异丁酸于250mL氟塑料烧杯中,加少量超纯水微热溶解,转入3000mL石英试剂瓶中,超纯水稀释至刻度(3000mL),充分摇匀。此时α-HIBA的量浓度为0.23mol/L,pH值~2.6,通过加超纯氢氧化铵,酸度计测量,将溶液酸度调节到pH值~4.6。由于平衡氢氧化铵的浓度难以控制,需要分多次加入,每加一次摇匀后测一次pH值,注意掌握pH递增规律,最后是逐滴加入,必要时将氢氧化铵稀释。每次测量pH值是将溶液倒在10mL小烧杯中,测量过的溶液弃去,不再回到大瓶中。将酸度调节好的α-HIBA溶液密封保存,供长期使用。

c)上柱分离。实验证明在采用本方法时,树脂粒度、均匀性以及α-HIBA溶液的浓度、pH值等条件变化对钐、钕洗出峰位置的影响十分明显,而每次处理树脂和配制α-羟基异丁酸溶液都不可能完全重复,因此当每处理一次树脂和配制一次α-HIBA溶液后,都需要用标准溶液做一次分离实验,用ICP或铀试剂Ⅲ法检测,得出修正后的新淋洗曲线。这种离子交换分离又分加压和自然流速两种,前者的稳定性优于后者。

下面以一个有效流程示例。用滴管从大瓶中吸入少量经过预处理的AG50×8树脂加到2mm×350mm石英柱中,以自然沉降或加压方式至树脂床高320mm,直径2mm,此时应注意树脂柱结构的均匀性,不能有分层和气泡。加5mL0.23mol/LpH4.6的α-HIBA溶液平衡,流干。用几滴α-HIBA将经过第一次分离的试样(仅有总稀土元素)溶解,用微量移液管逐滴上柱,流干,再加10mL0.23mol/LpH4.6的α-HIBA,通过光谱纯氮气加压,控制滴速在1滴/55s±5s左右,液滴计数器计数。对于ID试样,0~44滴弃去,45~56滴收集钐,57~150滴弃去,151~175滴收集钕;对于IC试样,0~150滴弃去,151~175滴收集钕。收集液蒸干后不再进一步处理(破坏HIBA),直接进行质谱分析。有的实验室在收集液蒸干后还要加几滴高氯酸分解α-HIBA,或再经一次阳离子树脂分离除去α-HIBA。

经ICP检测该流程钐-钕分离度(Rs)达到5.00。

b.萃取色层分离。由于使用材料不同,本方法又分HDEHP+聚四氟乙烯粉末、P204萃淋树脂和P507萃淋树脂三种。HDEHP(P204)是二-2-乙基己基正膦酸,HEHEHP(P507)是2-乙基己基膦酸单2-乙基己基脂,都是稀土元素萃取剂。

a)HDEHP+聚四氟乙烯粉末。

(a)色层柱准备。将萃取剂HDEHP、聚四氟乙烯粉末、分析纯丙酮按1∶10∶100比例置于500mL聚四氟乙烯烧杯中,用磁力搅拌器高速搅拌至丙酮近干,使HDEHP紧密附着在聚四氟乙烯粉末表面,加少量0.20mol/L超纯盐酸调成稀糊状,转入6mm×180mm石英柱中自然沉降、压实,取色层柱高100mm,直径8mm,上覆一层厚10mm的AG1×8树脂帮助压实聚四氟乙烯粉末,30mL6mol/L超纯盐酸淋洗消除本底,超纯水淋洗至中性(pH试纸检验),5mL0.20mol/L超纯盐酸平衡,待用。

(b)上柱分离。用1mL0.20mol/L超纯盐酸将经过第一次分离的试样(仅有总稀土元素)溶解,倒入色层柱,再用1mL0.20mol/L超纯盐酸涮洗烧杯后倒入。加8mL0.20mol/L超纯盐酸淋洗铈,洗出液弃去,流干后加10mL0.20mol/L超纯盐酸洗脱钕,收集于10mL聚四氟乙烯烧杯中。对于IC试样分离程序到此结束,ID试样需要继续加10mL0.20mol/L超纯盐酸淋洗,洗出液弃去,5mL2.5mol/L超纯盐酸洗脱钐,收集于10mL聚四氟乙烯烧杯中。收集液在电热板上缓慢蒸干,待质谱分析。

(c)色层柱再生。在分离程序全部完成后用30mL6.0mol/L超纯盐酸分2次加入淋洗,再用超纯水淋洗至中性。不用时将整个柱子浸在水中,防止色层柱因失水而断裂。

b)P204萃淋树脂。采用P204萃淋树脂分离稀土元素是近30年发展起来的技术,萃淋树脂实际上是一种含液态萃取剂的树脂,而P204萃淋树脂是稀土元素萃取剂HDEHP(P204)与阳离子树脂的聚合,基于悬浮聚合原理用特殊方法制成。

(a)树脂柱准备。取20g左右120~200目P204萃淋树脂于6.0mol/L优级纯盐酸中浸泡24h,以稀糊状倒入8mm×180mm石英柱中,缓慢沉降至树脂床高100mm,直径8mm,上面覆盖一层10mm厚AG1×8树脂帮助压实树脂床(此时应注意树脂床中不能有气泡,树脂粒度应该均匀),30mL6.0mol/L超纯盐酸淋洗,超纯水洗至中性(pH试纸检验),5mL0.36mol/L超纯盐酸平衡,待用。

(b)上柱分离。用1mL0.1mol/L超纯盐酸将经过第一次分离的试样(仅有总稀土元素)溶解,倒入树脂柱,再用3mL0.1mol/L超纯盐酸分2次涮洗烧杯后倒入。加7mL0.36mol/L超纯盐酸淋洗铈,洗出液弃去,加10mL0.36mol/L超纯盐酸洗脱钕,收集于10mL聚四氟乙烯烧杯中。对于IC试样分离程序到此结束,ID试样需要继续加10mL0.36mol/L超纯盐酸淋洗,洗出液弃去,5mL2.5mol/L超纯盐酸洗脱钐,收集于10mL聚四氟乙烯烧杯中。收集液在电热板上缓慢蒸干,待质谱分析。

(c)树脂柱再生。在分离程序全部完成后用30mL6.0mol/L超纯盐酸分2次加入淋洗,再用超纯水淋洗至中性。不用时将整个柱子浸在水中,防止树脂柱因失水而断裂。

c)P507萃淋树脂。P507萃淋树脂与P204萃淋树脂属同一类型。

(a)树脂柱准备。取20g左右120目~200目P507萃淋树脂于6.0mol/L优级纯盐酸中浸泡24h,以稀糊状倒入6mm×300mm石英柱中,缓慢沉降至树脂床高200mm,直径6mm,上面覆盖一层10mm厚AG1×8树脂帮助压实树脂床(此时注意树脂床中不能有气泡,树脂粒度应该均匀),30mL6.0mol/L超纯盐酸分2次淋洗,超纯水洗至中性(pH试纸检验),10mL0.10mol/L超纯盐酸平衡,待用。

(b)上柱分离。用1mL0.10mol/L超纯盐酸将经过第一次分离的试样(仅有总稀土元素)溶解,倒入树脂柱,再用1mL0.10mol/L超纯盐酸涮洗烧杯后倒入。加10mL0.10mol/L超纯盐酸淋洗铈,洗出液弃去,加10mL0.10mol/L超纯盐酸洗脱钕,收集于10mL聚四氟乙烯烧杯中。对于IC试样分离程序到此结束,ID试样需要继续加20mL0.10mol/L超纯盐酸淋洗,洗出液弃去,5mL2.5mol/L超纯盐酸洗脱钐,收集于10mL聚四氟乙烯烧杯中。收集液在电热板上缓慢蒸干,待质谱分析。

(c)树脂柱再生。在分离程序全部完成后用50mL6.0mol/L超纯盐酸分2次加入淋洗,再用超纯水淋洗至中性。不用时将整个柱子浸在水中,防止树脂柱因失水而断裂。

上述方法分离钐、钕都十分稳定而有效,但是α-HIBA离子交换法流程较复杂,HDEHP+聚四氟乙烯粉末法中萃取剂较容易脱落,P507萃淋树脂由于比重小装柱比较困难,因此目前用得较多的是P204萃淋树脂,该方法钐-钕分离度高,稳定性强,装好一次柱可以长时间使用而效果不变。由于树脂床内径、高度互有不同,不同时间、不同厂家和批次的萃淋树脂在性能上也会有差异,因此每当处理一次树脂装好一批柱子时都需做淋洗曲线,具体确定最佳分离条件。

Sm、Nd同位素分析

Sm、Nd同位素分析操作以双带源MAT261为例,其他型号质谱计类同。

1)装样。灯丝铼带预处理,将铼带用无水乙醇清洗,点焊机将铼带点焊在灯丝支架上,将已点好铼带的支架依次插在离子源转盘上,整体放进灯丝预热装置中,待真空抽至n×10-5Pa后,按预设程序给铼带通电,在4~6A电流和1800℃温度下,每组带预烧15min,以除去铼带上杂质。

将离子源转盘上已烧好的铼带初步整形,依次取下电离带。两小滴3.5mol/L超纯硝酸将试样溶解,用微量取样器将溶液逐滴加在蒸发带中央,给蒸发带通电流,强度1A左右,使试样缓慢蒸干,以后逐步加大电流至带上白烟散尽,进一步升温至铼带显暗红后迅速将电流调至零,转到加下一个样。当试样全部装好后按原位置插上电离带,进一步给铼带整形,要求蒸法带与电离带两者彼此平行靠近,但又绝不能碰到一起,两带间距离以0.7mm为宜。装上屏蔽罩,送入质谱计离子源中,抽真空。

2)Sm、Nd同位素分析。

a.未加稀释剂试样的143Nd/144Nd比值(IC)测定。测定对象为金属离子流Nd+。当离子源真空达到5×10-6Pa时打开分析室隔离阀,电离带与蒸发带通电流缓慢升温,注意在加大电流过程中试样排气和真空下降情况,避免真空下降过快。在真空达到2×10-6Pa以上,电离带电流在4~6A,蒸发带电流2.5A左右,灯丝温度达到1700℃~1800℃时,将测量系统处于手动状态,调出引导峰146Nd(或142Nd、145Nd),小心调节峰中心和带电流,使Nd+离子流强度达到n×10-11A(高压10kV,高阻1011Ω)并保持稳定。采用多接收器自动采集同位素比值143Nd/144Nd、145Nd/144Nd、146Nd/144Nd和147Sm/144Nd等数据,均取6位有效数字,其中147Sm/144Nd监测钐-钕分离情况,145Nd/144Nd监测测定值准确性,146Nd/144Nd用于质量分馏效应校正。每个试样至少采集10组(block)数据,每组数据由8~10次扫描组成,最后取143Nd/144Nd比值的加权平均值并给出标准偏差,必要时增加采集数据流程。

b.试样+稀释剂混合物的Sm、Nd同位素比值(ID)测定。分两种情况:

a)ID分样经过二次分离,此时钐、钕完全分开,它们的同位素比值是分别装样、分别测定的。系统抽真空、通带电流升温、调出引导峰使离子流强度达到最大等操作程序同未加稀释剂试样,仅仅在测钐同位素时离子源温度稍低。采用多接收器,当使用145Nd+149Sm混合稀释剂时,钕、钐分别采集143Nd/145Nd、146Nd/145Nd和147Sm/149Sm、154Sm/149Sm两组数据(根据多接收系统中法拉第杯的配置情况可以做相应调整,此外如果使用146Nd、147Sm等稀释剂取值也应做相应改变),均取6位有效数字。由于钐、钕都有多个同位素,因此应同时采集两组以上比值用于质量分馏效应校正,这样可以将浓度(147Sm/144Nd)的测定精度提高1~2个数量级。具体办法有多种:①与数据采集同步,根据现场测出的两组以上比值及时计算浓度,当两个结果在误差范围内一致时为最佳测定值。②联立方程法(见下节)。③迭代法,该方法适用于平行测定较多的情况。

b)ID分样仅进行一次总稀土元素分离,钐、钕未单独分开。通过一次装样、测定,同时完成钐、钕同位素分析。该方法利用了145Nd、146Nd和147Sm、149Sm分别是钕、钐的特型同位素,不存在同质异位素干扰的特性。系统抽真空、通带电流升温、调出引导峰使离子流强度达到最大等操作程序同未加稀释剂试样。采用多接收器采集146Nd/145Nd与147Sm/149Sm2组数据。该方法优点是节省工作量,缩短了流程,缺点是混合物的单个同位素比值不能进行质量分馏效应校正,此外杂质元素增多也影响离子流的发射和稳定性,总体上测定精度没有钐、钕经过二次分离的高。

温馨提示:答案为网友推荐,仅供参考
相似回答