如何判断收敛和发散

如题所述

判断收敛和发散方法如下:

当n无穷大时,判断Xn是否是常数,是常数则收敛,加减的时候,把高阶的无穷小直接舍去,乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来代。

设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{xn}收敛于a(极限为a),即数列{xn}为收敛。

求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。

发散与收敛对于数列和函数来说,它就只是一个极限的概念,一般来说如果它们的通项的值在变量趋于无穷大时趋于某一个确定的值时这个数列或是函数就是收敛的,所以在判断是否是收敛的就只要求它们的极限就可以,对于证明一个数列是收敛或是发散的只要运用定理就可以。

收敛的定义方式很好的体现了数学分析的精神实质

1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。

2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。

3、加减的时候,把高阶的无穷小直接舍去如1+1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如1/n*sin(1/n)用1/n^2来代替。

4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2023-06-19

收敛与发散判断方法:当n无穷大时,判断Xn是否是常数,是常数则收敛,加减的时候,把高阶的无穷小直接舍去,乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来代。

比较判别法:将给定级数与已知的收敛或发散的级数比较,根据比较结果作出结论。比值判别法:取级数的相邻两项的比值,当极限存在且小于1时,级数收敛;当极限大于1时,级数发散。

根值判别法:取级数的绝对值的第n项的n次方根,当极限存在且小于1时,级数收敛;当极限大于1时,级数发散。积分判别法:将级数中的每一项看成函数的值,在积分区间上进行定积分运算,若积分收敛,则级数收敛;若积分发散,则级数发散。

级数收敛的必要条件:若级数收敛,则其通项必须趋于0。交错级数的判别法:交错级数是指相邻项符号不同的级数。若其通项趋于0且满足Leibniz条件,则交错级数收敛。绝对收敛与条件收敛:若级数的绝对值收敛,则称该级数绝对收敛;若级数收敛但绝对值发散,则称该级数条件收敛。

特殊级数的收敛性:例如p级数、调和级数、幂级数等级数有其特别的判别方法,需要根据具体情况进行分析。以上是无穷级数的敛散性判别方法的常见方式,不同的方法适用于不同的级数,需要结合具体情况进行选择和应用。

无穷级数敛散性判断是在数学中常见的一个概念,它用于判定一个给定的无穷级数是否收敛或散开。数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。



相似回答