中国海相盆地油气勘探潜力分析

如题所述

何治亮 王琳 罗传容 易荣龙

(中国石化荆州新区勘探研究所,湖北荆州 434100)

【摘要】 中国海相领域的勘探成效将从深层次上影响中国21世纪能源供给能力和能源结构的调整步伐。中国海相地层形成于4个建造旋回,经历了4期主要改造事件,根据其发育展布和赋存方式可大致划分为海域区、东部区、中西部区、青藏区。多旋回的叠加与改造是中国海相盆地共同的特点,不同的只是叠加改造的方式。由复式烃源与多期生烃、“改造型”储层、复式封闭体系与保存条件、复式输导网络、复合圈闭、复式油气聚集区构成的复式油气系统是中国海相成藏的基本特点。中国海相领域具有巨大的油气资源潜力,但资源丰度差别很大,且天然气大于石油。海相盆地众多,可供勘探的范围极为广阔。建议采用“整体分析评价、分层次动态部署、重点科技攻关与综合勘探、滚动勘探开发”等原则开展海相领域油气勘探工作。

【关键词】 海相领域;多旋回盆地;复式油气系统;资源潜力

21世纪初期,中国油气储量和产能的持续增长将依靠4个方面:东部陆上白垩系、第三系陆相盆地稳中求升;西部三叠系、侏罗系煤系地层的增储上产;海域陆相盆地的加速开发;海相领域的重大发现与突破。其中,海相领域的勘探成效将从深层次上影响中国21世纪能源供给能力和能源结构的调整步伐。

中国海相油气勘探领域已得到了国内外石油界的广泛重视。经过“六五”以来各石油勘探开发单位卓有成效的工作以及国家科技攻关项目和各公司相关科研项目的实施,在勘探开发成果、勘探开发技术和地质理论及认识上均取得了令世人瞩目的成果。20世纪80年代后期以来,海相领域的油气勘探陆续取得了一系列具有战略意义的突破,为今后取得更大的突破奠定了坚实的基础。中国海相地层展布范围广,资源潜力大,具备形成大型甚至特大型油气田的地质条件,决定了今后大规模勘探开发的可行性。但海相地层形成时代老,海相盆地经历的后期改造多,导致了复杂的油气成藏条件、相对复杂的地表条件和勘探深度较大等,加之海相领域的整体勘探程度低,传统勘探评价思路存在局限性,使过去的工作存在一定的盲目性,勘探效益不高。中国的海相领域的油气勘探工作,既是挑战,更是机遇。

1 中国海相盆地的地质背景

据统计,我国海相沉积分布总面积大于4561800km2,其中陆上海相盆地数28个,面积3308530km2,海域海相盆地22个,面积1253270km2

中国海相地层形成于4个建造旋回,经历了4期主要改造事件,根据其发育展布和赋存方式可大致划分为4个大区。

1.1 四个建造旋回

1.1.1 Z—

旋回

属古生代古亚洲洋体系。构成一个完整的开合旋回,是中国展布最广泛的海相层系。其消失的古大洋包括北天山、南天山—大兴安岭洋,西昆仑—东昆仑、祁连—秦岭洋,华南洋,其间的地块广泛沉积了厚度不等的海相地层,其间包括多套优质烃源岩。

1.1.2 D—

旋回

属于古生代古亚洲洋体系。构成了一个相对完整的开合旋回。由于整体属板块聚敛环境,早期的拉张不完全。在早期闭合的大洋处形成一些窄洋盆,块体内形成了小型陆内裂谷。不同地块海相地层发育差异性很大。华北地块以海陆过渡相煤系地层为主,华南地区则以海相碳酸盐岩沉积为主。

1.1.3 

—k1旋回

属于特提斯洋体系。北部地区随着海水向东西两侧的退出转变为陆相环境。南部地区经历了较完整的开合旋回,形成了从裂谷-初始洋-聚敛体制下的弧后边缘海-残余弧后盆地-前陆盆地等原型系列。随着特提斯洋的闭合,海水向南、东、西3个方向退出,中国陆上大部分地区转化为陆相环境。

1.1.4 K2—N旋回

属于太平洋-印度洋体系。仅西藏南部、新疆塔里木等地存在特提斯残留海或近海短时间海侵形成的海湾环境。东南部及沿海陆架地区的裂谷及走滑盆地偶被海侵。晚新生代东海、南海转变为海相环境。

1.2 四大改造事件

1.2.1 加里东晚期事件

形成了多个加里东造山带。中国大部分地区发生褶皱、隆升,沿造山带发生了广泛的花岗岩侵入活动。加里东期形成的超过100×108t储量的油气田遭到不同程度的改造和破坏。

1.2.2 海西晚期事件

较加里东事件弱,形成了多个海西期造山带。岩浆活动较强烈。在经过挤压褶皱隆升后不久,下沉被多个前陆盆地叠加。所形成的油气藏遭到过改造和破坏,但程度相对较弱。

1.2.3 燕山事件

它是深刻地影响中国区域地质格局的事件。表现为造山带的重新活动、地块内部的多方式的构造变形及广泛的岩浆活动。主要由两期事件构成。中侏罗世末,西伯利亚板块向南的推挤形成向南突出的蒙古弧。早白垩世末,太平洋古陆向西的推挤形成向西北突出的华南弧。燕山事件总体来看东部变形较西部强。

1.2.4 喜马拉雅晚期事件

主要起因于印度板块向北的强烈推挤。西部以挤压变形为主。东部则由于块体向太平洋方向蠕散及深部原因,以伸展变形与走滑变形为主。是已形成油气藏的改造与再次聚集的主要时期。

1.3 四个大区

经过多旋回盆地的叠加和多期次的变盆改造过程,中国海相领域表现出不同的地层发育与赋存方式、不同的构造变形样式、不同的成藏系统,因而表现出不同的油气资源潜力和勘探前景。通过分析和比较,中国重力图上所呈现的3条重力梯度带是多旋回演化历史中形成的具有丰富地质内涵的界线,可作为海相勘探领域的分区界线。

所分出的4个大区分别为:海域区——包括东海、南海等区域;东部区——大兴安岭—太行山—武陵山以东的陆地区及黄海及渤海海域;中西部区——西昆仑—祁连山—龙门山一线以北以东的区域,分布有塔里木、准噶尔、鄂尔多斯、四川等大型盆地;青藏区——新生代快速隆升的区域,包括滇西、川西、青海、西藏等。

2 海相盆地的基本特点——多旋回盆地

除了中国海域晚新生代的海相盆地外,其他海相地层大部分形成于古生代和早中生代,沉积后经过了多期次的抬升、沉降和复杂的褶皱、断裂、岩浆活动与变质作用,多旋回的叠加与改造是中国海相盆地共同的特点,不同的只是叠加改造的方式[1~3]

中国的“克拉通”仅相当于北美、非洲板块1/20左右,显生宇以来经历了从南纬30°到北纬40°左右的长距离漂移及旋转。在与哈萨克斯坦、西伯利亚、西太平洋、印度、印支-南海等大大小小的板块以及更小尺度的地体间的分离、敛合、拼贴、碰撞过程中,形成了多变的地球动力学背景。这种背景是这些板块内部和边缘成盆与变盆、叠加与改造的内在动力。同时,导致了盆地演化历史中多变的热体制。

中国海相盆地具有条块分割的基底结构,发育网络状的断裂体系,具有极强的不均一性,构成了盆地演化过程中不稳定的边界条件。

在从洋陆板块构造体制向大陆板内体制转化的过程中,古生代构造演化的南北分割性和中、新生代构造演化东西的差异性导致了不同的叠加与改造方式。如塔里木盆地主体在古生代为整体沉降,间以弱改造的整叠加,产生了几个多期复合的古隆起。中生代则表现为盆地边缘沉降、沉积为主的镶嵌叠加方式。新生代又统一为南北两大前陆盆地所构成的大型复合盆地,呈披覆叠加方式。下扬子盆地在古生代与塔里木盆地类似,中生代表现为强烈的挤压变形,新生代为强烈的伸展断裂活动。呈NE向排列的断凹和断凸呈雁形排列,将统一的古生界地层改造成条块分割的格局。统一与分割是两类海相盆地叠加方式的鲜明特点,相对稳定性与活动性成为中西部与其他地区盆地的两种风格[4]

油气盆地包括3种含义——构造原型、地层实体、油气水赋存的空间。就东部弱改造的新生代盆地而言,常常表现为三位一体。而对以古生界为主的海相盆地而言,构造原型盆地的部分可能已卷入到造山带之中或因抬升而被剥蚀。而保留下来地层实体盆地因构造变形分割、差异升降等原因,具有多个相对独立的油气水流体赋存单元——流体盆地。也正是这些流体盆地,构成了海相领域的具体勘探对象。它们具有较完整的海相地层的保存,变形改造较弱,整体具备顶封和封闭性边界,一般上覆有中新生界沉积。这是一个可能保存早期形成油气同时也具备后期油气生成-运移-聚集-保存的地质单元,既是一个“复杂”或“复式”的油气系统,当然也是一个油气的“保存单元”[5]

多旋回的改造与叠加过程导致了广泛存在的复合变形作用,形成了不同尺度的复合构造[6]。大至一个叠加的盆地(也称复合盆地),小至一组节理,组成了丰富多彩的复合构造样式。构造变形是把双刃剑。复合变形与复合构造控制了油气的生成、运移、聚集、保存、散失与调整过程,是海相盆地油气规模聚集和大量散失的主要因素。如塔河油田、五百梯气田所处构造都属典型的复合构造。江苏地区句容盆地深层的双重堆叠背形构造,苏北盆地负反转的控凹断裂,则属破坏性的复合构造。

3 海相成藏的基本特点——复式油气系统

3.1 复式烃源与多期生烃

从塔河油田所在的阿克库勒油气区产于奥陶系、石炭系和三叠系的油气性质来看,可能存在多区、多层、多期、多类型的油源,根据流体包裹体的研究,塔河地区可能存在不少于3期的生烃过程。鄂尔多斯北部和川东地区油气藏可能也具有多期、多层系的烃源。有别于陆相盆地的复式烃源。

现有的干酪根热降解学说及相应的排烃理论的局限性已为越来越多的学者所注意[7]。早期形成的大量低熟油和高演化的古老烃源所形成的正常原油均与传统的生排烃理论相悖。可溶有机质成烃、晶包有机质成烃、原油及沥青降解与热裂解成烃、热稳定性较高的有机质晚期成烃,均有学者提及[8]。有人认为五百梯气田的气是由印支-燕山早期形成的油裂解而成。而塔中北坡及哈拉哈塘等志留系近100×108t储量的古油藏可能是塔中及阿克库勒地区油气的重要来源之一。

已压实的泥质岩及碳酸盐岩的排烃机制尚不十分清楚。构造抬升剥蚀减压、烃类形成所造成的高压、碳酸盐岩的压溶作用及晶析作用排烃,是有别于传统压实排烃的一些排烃机制。

在现在所开展的海相资源预测研究中,由于传统评价思路的制约,我们可能过低估算了部分Ⅰ类母质烃源的生烃量(实验证实,颗石藻产烃量是其他藻类的6~15倍),也可能过高估计了部分烃源二次生排烃的规模,特别是有效聚集的规模。

3.2 “改造型”储层

在海相领域的几个重大突破中,油气田储层的储集空间多为后期改造作用所形成。鄂尔多斯中部大气田属古岩溶储层,塔河油田奥陶系也属裂缝及古岩溶储层。川东石炭系是一套经过云南运动改造,发育次生裂缝-溶蚀孔隙的优质储层。塔河油田奥陶系储层形成于一个多期复合变形区,发育多组裂缝系统以及海西早期为主的强烈的岩溶作用,形成了一种“小尺度”上具极强的非均质性,而“大尺度”(经酸化压裂后,探井、开发井的探索范围扩大)上则具相对均质性的优质储集空间。尽管该油田油质较重,但大部分井都能稳产。这些主要受控于构造变形及表生地质作用形成的层状或层控储层或储集体,我们称之为“改造型”储层。

由于年代老,埋藏深,大部分原生孔隙往往因压实、压溶、胶结等成岩作用而大大减少。因此,重视与不整合面有关的古岩溶储层和与褶皱及断裂活动有关的裂缝性储层的探索与研究,是海相油气勘探的重要环节。

3.3 复式封闭体系与保存条件

海相领域的保存条件是公认最重要的成藏条件。由于成岩影响,早期泥质岩盖层封盖能力明显降低,加上断裂及裂缝的发育,导致海相地层的整体封盖能力急剧变差。

也有许多地区还存在优质的盖层。苏北志留系高家边组因伊利石化而呈脆性,但部分井段却钻遇软泥岩并发生缩孔现象。塔河下石炭统的巴楚组,开江地区下二叠统梁山组均属较好的直接盖层。

是否有具高压异常的间接盖层是海相油气大规模聚集的重要条件之一。塔河地区石炭—二叠系内存在的异常高压(压力系数1.2~1.4)是其下奥陶系规模聚集的必要条件。沿异常高压带的薄弱带和边缘,油气向上运移并聚集于石炭系、三叠系、侏罗系及白垩系地层之中。开江地区嘉陵江组二段为一间接优质盖层,其下气藏压力系统为1.4~2.2,为流体异常高压层,构成了良好的区域封闭条件。南盘江地区上泥盆统存在低电阻泥岩,江汉沉湖地区下二叠统—石炭系存在地层异常压力,这些现象值得重视。由直接盖层和异常高压带能构成高效的复式封闭体系。

后期的变形及抬升往往使早期的封闭系统被部分或完全破坏,能否重建封闭是再次成藏的前提。塔河地区早石炭世的快速海侵导致了巴楚组泥岩直接覆盖于奥陶系之上,构成了良好的储盖配置。东河塘油田及雅克拉气田、川东、鄂尔多斯的气田也是重建封闭后的产物。苏北黄桥CO2气田,三水沙头圩CO2气田也都是重建封闭后发生的聚集与保存。

早期形成的油气藏的保存,即受控于区域的保存环境,更取决于局部的保存条件。就层状盖层封闭保存系统而言,油气的保存并不由最好的盖层分布区决定,而取决于同一封闭系统中差盖层的封闭保存能力,由层状盖层+断层和不整合面构造的封闭系统,其保存能力多由断层或不整合面的封闭能力确定(油气封闭的木桶效应)。

3.4 复式输导网络

海相多旋回盆地的多期复杂构造变形作用形成了复杂的断裂及不整合系统。它们穿越多个单一油气系统,是形成复式油气系统的必要条件。这些多期开启与封闭的构造形迹组合与渗透性地层一起构成了复杂的油气运移系统。如塔里木盆地北部隆起区存在由多期断裂和不整合面所构成的输导网络,使多期多源形成的油气横向上沿断裂和不整合面成带成片富集成藏,纵向上沿断裂多层聚集。沿一些倾没于生烃区的构造脊和鼻状构造,常构成油气二次运移的“汇烃脊”,在油气资源丰度较低的地区,位于“汇烃脊”的圈闭充注能力高,而非“汇烃脊”上圈闭则充满度低或无油气。

3.5 复合圈闭

研究证实,塔河下奥陶统油藏属阿克库勒古隆起控制的大型构造-地层复合圈闭,陕甘宁大气田属中央古隆起控制的巨型构造-地层复合圈闭,五百梯气田则属开江古隆起控制地层-构造复合圈闭,川西地区新场气田也属典型构造-岩性复合圈闭,鄂尔多斯北部上古生界的天然气主要聚集鼻状在构造与河道砂所构成的构造-岩性复合圈闭。川东地区针对71个石炭系不同类型的圈闭进行了钻探,发现气藏42个,成功率57.5%。其中断层圈闭钻探11个,因断层具开启性全部产水。而地层-构造复合圈闭钻探12个,发现气藏10个,成功率83.3%[9]

加强复合圈闭的研究,深入开展复合圈闭的落实、描述、分析与评价,对海相盆地的油气发现将产生重要的作用。

3.6 复式油气聚集区

在渤海湾陆相盆地勘探实践中,我国石油工作者创造性地提出了“复式油气聚集区”的理论[10]。在海相领域的油气发现中,在同一个构造区带内,常常发现多产层、多圈闭类型、多油气类型甚至多压力系统的油气田(藏),构成具有内在成因联系的油气田群(带)。海相复式油气聚集区与陆相“复式油气聚集区”即相似又不同,表现得更丰富多彩。如塔里木盆地阿克库勒凸起、川东开江古隆起、鄂尔多斯中部大气田均属形成于复式油气系统的典型的复式油气聚集区。

4 中国海相盆地勘探潜力分析

4.1 油气资源量

油气资源量是开展勘探选区评价的重要参考资料。20世纪80年代和90年代初,由原中国天然气总公司和原地质矿产部开展了全国范围的油气资源评价。随着许多领域勘探工作的不断深入,油气资源量又分别进行了调整和补充。由于勘探及研究程度的不同,加之所采取的资源量计算方法不同,同一区域或盆地的资源量往往差别很大。就一个盆地而言,甚至可能导致两种完全不同结论。1994年CNPC计算海相领域(不含海域)资源量为326×108t油当量。根据“八五”以来最近的计算结果,主要海相盆地的油气资源量总体达600×108t以上(表1)[11~13],几乎超过1倍。

表1 中国主要海相盆地油气资源量简表

从计算结果中可以看出,第一,海相油气资源量中天然气大于石油,勘探对象以气为主。第二,海相盆地油气资源丰度差别很大,整体不富局部富甚至很富。第三,海相领域具有巨大的油气资源潜力。

4.2 勘探现状与勘探潜力分析

中国几代石油人均对海相领域倾注了大量心血。海相油气勘探走过了一条充满希望的曲折之路,既有过成功的喜悦,也有过挫折后的反思。经过艰苦卓绝的勘探与研究工作,已取得了丰富的勘探及研究成果。

(1)发现了一大批中型油气田,累计获石油地质储量大于10×108t,形成了2000×104t的油气产能,已成为中国石油工业不可或缺的的组成部分。尤其是塔里木、四川、准噶尔等盆地一批优质储量的发现,产生了可观的经济效益,建成了几个今后发展能依托的石油基地。

(2)对海相地层的发育展布与赋存方式已基本掌握,估算了海相领域的油气资源量,对不同地区和盆地的油气资源结构和油气资源丰度已形成初步认识,对坚定海相领域的勘探信心和今后的战略选区均具有积极的作用。

(3)在认识到海相领域复杂性的同时,已掌握了许多海相领域成盆、成烃和成藏的内在规律,创造性地提出了一批针对海相领域的地质理论和思路,丰富了石油地质学的内涵,为今后的油气勘探奠定了理论基础。

(4)形成了一批先进有效的勘探技术方法系列,如山地、黄土源、荒漠及高陡地层、盐下的地震勘探技术,超深水平井,欠平衡钻井,高陡地层、巨厚盐层、多压力系统钻井技术及一批针对性的测井、测试技术,深井酸压技术,储层横向预测技术,复杂油气藏描述技术等,为今后勘探提供重要的技术保证。

表2 中国主要海相盆地油气探明程度简表

(资料截止1998年,仅供参考)

勘探效果不甚理想,除了与认识不到位、采用技术方法不配套等原因外,宏观上海相领域的复杂性(事实上已超过中国陆相盆地)和勘探工作量的明显不足、勘探及研究投入不够,是最主要的原因。如中国南方共打井868井,但只有59口井大于3000m,真正打海相地层的480口井中、打古潜山的有166口。华北钻入古生界的井达1509口,但这些探井均以新生古储的古潜山为勘探对象,真正打原生油气藏的几乎没有[10、11]。塔里木、鄂尔多斯、四川等重点盆地资源量的探明程度均不到10%(表2),勘探余地很大。关键是要在总结海相油气成藏及富集规律的基础上找准主攻领域和具体勘探目标,通过选择先进配套的勘探技术系列和构建一个高效的勘探及决策系统,去实现勘探目的。

中国海相可供勘探的范围极为广阔,盆地众多。中国海相油气领域不仅勘探程度很低,而且极不平衡。建议采用“整体分析评价、分层次动态部署、重点科技攻关与综合勘探,滚动勘探开发”等原则开展海相领域油气勘探工作。

“技术进步和丰富的想象力可以定期开拓新领域”[14]。事实上,关于中国海相领域的所有工作还只是开始,我们面临的领域还很广阔。

参考文献

[1]朱夏.多旋回构造运动与含油气盆地.中国地质科学院院报(第9号).北京:地质出版社,1983.

[2]关上聪.中国中新生代陆相沉积盆地与油气.北京:地质出版社,1988.

[3]王金琪.小陆拼接、多旋回、陆内构造——中国大陆石油地质三根基柱.成都理工学院学报,1998,25(2):182~190.

[4]刘光鼎.试论残留盆地.勘探家,1997,2(3).

[5]孙肇才,邱蕴玉,郭正吾.板内形变与晚期次生成藏——扬子区海相油气总体形成规律的探讨.石油实验地质,1991,13(2):107~142.

[6]丘元禧.论构造复合.地质力学学报,1998,4(1):1~11.

[7]何志高.论干酪根热降解成油理论弊端.海相油气地质,1999,4(2):50~57.

[8]秦顺亭.江苏下扬子区中古生界成藏条件及勘探思路.海相汕气地质,1998,3(1):6~11.

[9]胡光灿,谢姚祥,等.中国四川东部高陡构造石炭系气田.北京:石油工业出版社,1997.

[10]邱中健.我国油气勘探的经验和体会.石油学报,1999,20(1):1~7.

[11]赵政璋主编.油公司油气勘探之路——新区勘探项目管理探索.北京:石油工业出版社,1998.

[12]中国石油化工集团公司.石油勘探开发技术工作会议文集.北京:中国石化出版社,1999.

[13]张寄良,等.塔里木盆地与油气资源.北京:地质出版社,1997.

[14]A.佩罗东.石油地质动力学.北京:石油工业出版社,1993.

温馨提示:答案为网友推荐,仅供参考
相似回答