1、离散型
离散型随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
2、连续型
连续型随机变量即在一定区间内变量取值有无限个,或数值无法一个一个列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。
3、随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。
扩展资料:
随机变量的期望:
离散情形
如果X是离散随机变量,具有概率质量函数p(x),那么X的期望值定义为E[X]=
换句话说,X的期望是X可能取的值的加权平均,每个值被X取此值的概率所加权。
连续情形
我们也可以定义连续随机变量的期望值。如果X是具有概率密度函数f(x)的连续随机变量,那么X的期望就定义为E[X]=
换句话说,在上均匀分布的随机变量的期望值正是区间的中点。
参考资料:百度百科-随机变量
1、定义
离散型随机变量:全部可能取到的不相同的值是有限个或可列无限多个,也可以说概率1以一定的规律分布在各个可能值上。
连续性随机变量:能按一定次序一一列出,其值域为一个或若干个有限或无限区间。
2、随机变量的可取值
当随机变量的可取值全体为一离散集时称其为离散型随机变量,否则称其为非离散型随机变量;
随机变量的取值为一n维连续空间,称其为连续性随机变量。
扩展资料:
例子:
1、掷一个骰子,令X为掷出的结果,则只会有1,2,3,4,5,6这六种结果,而掷出3.3333是不可能的,因而X也是离散型随机变量。
2、公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,
3、x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3分钟、5分钟7毫秒、在这十五分钟的时间轴上任取一点,都可能是等车的时间,因而称这随机变量是连续型随机变量。
参考资料来源:百度百科-离散型随机变量
参考资料来源:百度百科-连续型随机变量
本回答被网友采纳1、定义不同
离散型随机变量:全部可能取到的不相同的值是有限个或可列无限多个,也可以说概率1以一定的规律分布在各个可能值上。
连续性随机变量:能按一定次序一一列出,其值域为一个或若干个有限或无限区间。
2、随机变量的可取值不同
离散型随机变量的取值是离散的,连续性随机变量的取值不是离散的。
扩展资料
对于集合{xn,n=1,2,……}中的任何一个子集A,事件“X在A中取值”即“X∈A”的概率为
P{X∈A}=∑Pn
特别的,如果一个试验所包含的事件只有两个,其概率分布为
P{X=x1}=p(0<p<1)
P{X=x2}=1-p=q
这种分布称为两点分布。 如果x1=1,x2=0,有
P{X=1}=p
P{X=0}=q
这时称X服从参数为p的0-1分布,它是离散型随机变量分布中最简单的一种。由于是数学家伯努利最先研究发现的,为了纪念他,我们也把服从这种分布的试验叫伯努利试验。习惯上,把伯努利的一种结果称为“成功”,另一种称为“失败”。
参考资料来源:百度百科-离散性随机变量
参考资料来源:百度百科-连续型随机变量
本回答被网友采纳