对此现象的解释相当简单直接,即“光行时间效应”(light travel time effect)。想象一小团物质从银河系(星系)中心出发,并且朝向你极快速地移动,几乎是迎面而来。
当这团块还在银河中心时,它发出一些朝向你的光。在它移向你后(并且一点点偏向侧边),并且又再次向你发光,这次的光会花上比较短的时间向你行进,以其离你较近。如果你忽略了这项事实,那麼你就会低估了真正的时间间隔(就你的惯性参考系而言),因此你会高估速率。
换句话说,若你要计算团块移动多快,却假设它移动方向垂直于你与银河间的连接线,那麼你就会低估时间间隔,因为你忽略了事实上它也朝你移动,而得到数倍于光速的速率。
这现象常见于两个反向的喷流,一道远离我们,一道接近我们。若这两道辐射源,我们都观测多普勒位移,则速度与距离可以被决定,不受其他观察项目的影响。
发展
编辑
超光速运动
在1966年,马丁·里斯(Martin Rees)预测了(《自然》杂志211期, 468页):一物体以相对论性速度以及适切方向移动时,对远方观察者而言看起来可能像是有远大于光速的横向速度。
几年后(于1970年),这样的辐射源真的被发现了,形式为非常远处的天文学射电辐射源,例如射电星系与类星体。它们被称为「超光速辐射源」。这项发现是一项新技术的惊人结果,此技术称为特长基线干涉仪(Very Long Baseline Interferometry),允许小于毫角秒的位置决定,并可用在天空中位置变化的决定;这种变化称为自行(又称本动,proper motion),为期通常是好几年。外显速度的得到是透过将观察到的自行与距离相乘,可以上达6倍光速。之后,科学家们通过观察类星体的膨胀,并通过光谱测量了它们与地球的距离,计算出它们的膨胀速度也超过光速。
在1994年,在取得一项银河速率纪录的同时,发现了本银河系的超光速辐射源——宇宙x射线源GRS1915+105。团块的膨胀时间相对短得许多。许多个别的团块被侦测到(I.F. Mirabel and L.F. Rodriguez于《自然》杂志371期,48页,银河中的超光速辐射("A superluminal source in the Galaxy"))其成对膨胀,一周内常可达0.5角秒。因为与类星体相类比,这样的辐射源被称为微类星体。
其他
编辑
超光速运动
在量子论的世界里,物理量是“成对”的。也就是说,你不能同时 精确地测量两个相关联的物理量(称“测不准原理”)。速度是和位置成对的。所以,只要粒子的位置被精确地测定,它的速度就不会完全确定,同一个粒子可能在同一时间具有多个位置,具有多重存在性。也可能同一个事件具有多个不同的历史,(比如薛定谔猫)在理论中空间和时间也不是绝对的连续和平滑的,时间小于在10^-31s时不在能继续分割空间在小于10^-33m时也不能继续分割。不存在绝对的时空在量子空间中所以说有可能超过光速。科学家们在实验室中已经观测到了这一现象,将超过光速的粒子命名为“超子”。而在黑洞中,粒子正是借着这个测不准原理“蒸发”逃出黑洞的。
成就
编辑
超光速运动
超光速(faster-than-light, FTL或称superluminality)会成为一个讨论题目,源自于相对论中对于局域物体不可超过真空中光速c的推论限制,光速成为许多场合下速率的上限值。在此之前的牛顿力学并未对超光速的速度作出限制。而在相对论中,运动速度和物体的其它性质,如质量甚至它所在参考系的时间流逝等,密切相关,速度低于(真空中)光速的物体如果要加速达到光速,其质量会增长到无穷大因而需要无穷大的能量,而且它所感受到的时间流逝甚至会停止,所以理论上来说达到或超过光速是不可能的(至于光子,那是因为它们永远处于光速,而不是从低于光速增加到光速)。但也因此使得物理学家(以及普通大众)对于一些“看似”超光速的物理现象特别感兴趣。
2000年7月,由于英国《自然》(Nature,2000,406:277)杂志发表了一篇关于“超光速”实验的论文,引起了人们对超光速倒底是否存在的讨论。其实对在介质中使光脉冲的群速度超过真空中光速c,科学家们早有研究,而Nature中报道的这个实验就是实现了这种想法。但是这并非是人们想象的那种所谓违反因果律(或者相对论)的超光速,为了说明这个问题,让我们看一看由华人科学家王力军所做的这个实验。
光脉冲是由不同频率、振幅、相位的光波组成的波包,光脉冲的每个成分的速度称为相速度,波包峰的速度称为群速度。在真空中二者是相同的,但是在介质中如我们所知道的存在如下的群速度与介质。
折射率的关系:vg = c / ng , ng = n + ω(dn/dω)
显然在一定的情况下(如反常色散很强的介质)可以出现负的群速度,此时,光脉冲在介质中传播比真空中花的时间短,其差ΔT = (L/v) - (L/c)达到绝对值足够大时就可以观察到“超光速”现象,即“光脉冲峰值进入介质以前,在另一边已经有脉冲峰出射了”。
那么这种超光速是不是违背因果率呢?我们仔细考查王的实验就会发现,出射光脉冲虽然是在入射脉冲峰值进入介质之前出现的,但在这之前入射脉冲的前沿早已进入介质了,因此出射脉冲可以看作是由入射脉冲前沿与介质相互作用产生 的。其实王的实验重要意义正在于实现了可观测的负群速度的这一现象,而不是像媒体炒作的那样发现了什么“超光速”,负的群速度在这里就不能理解为光的速度了,它也不是能量传输的速度。当然,这一实验本身就说明我们人类对光的认识又前进了一步。对这个实验的解释只凭折射率与群速度的关系这个公式是远远不够的,这其中包含了量子干涉的效应,涉及到对光的本质的认识,揭开蒙在“超光速实验”头上的面纱,仍然是科学家们奋斗的目标。
很多人在了解了这个实验后就会想到能否用这种“超光速”效应来传递信息,在王的实验中,“超光速”的脉冲不能携带有用的信息,因此也就无从谈起信息的超光速传递,同样能量的超光速传输也是不行的。
与超光速实验具有相同轰动效应的是另一种“超光速”现象quantum teleportation即量子超空间传输(或量子隐形传态),这个奇妙的现象因其与量子信息传递及量子计算机的实现有密切联系而引起人们的关注。所谓超空间,就是量子态的传输不是在我们通常的空间进行,因此就不会受光速极限的制约,瞬时地使量子态从甲地传输到乙地(实际上是甲地粒子的量子态信息被提取瞬时地在乙地粒子上再现),这种量子信息的传递是不需要时间的,是真正意义的超光速(也可理解为超距作用)。在量子超空间传输的过程中,遵循量子不可克隆定律,通过量子纠缠态使甲乙粒子发生关联,量子态的确定通过量子测量来进行,因此当甲粒子的量子态被探测后甲乙两粒子瞬时塌缩到各自的本征态,这时乙粒子的态就包含了甲粒子的信息。这种信息的传递是“超光速”的。
但是,如果一位观测者想要马上知道传送的信息是什么,这是不可能的,因为此时粒子乙仍处于量子叠加态,对它的测量不能得到完全的信息,我们必须知道对甲粒子采取了什么测量,所以不得不通过现实的信息传送方式(如电话,网络等)告诉乙地的测量者甲粒子此时的状态。最终,我们获得信息的速度还是不能超过光速!量子超空间传输的实验已在1997年实现了。
以上两个超光速的方案目前还只处于理论探讨和实验阶段,离实用还有很远的距离,而且这两个问题都涉及到物理学的本质,实验现象及其解释都在争论之中。