基鲁纳含磷灰石铁矿矿床模型

如题所述

瑞典北极圈内的基鲁纳矿区位于瑞典首都斯德哥尔摩北部克布内凯赛峰(海拔2123m)以东50km。基鲁纳矿床是世界上最大的铁矿床之一,仅Kiirunnavaara矿含有大约20亿t的磁铁矿石,同时该矿床又是世界上最大的地下开采矿山之一。矿区内矿体长可达6km,矿区可分为Kiirunnavaara和Luossavaara矿床,Kiirunnavaara矿体长度约4km,平均宽度为90m,钻探深度为1100m,可能会延伸至2000m。该类矿床矿石主要为含磷灰石铁矿石,许多作者将其划为IOCG矿床(Hitzmanetal.,1992;Smith et al.,2005;Smith et al.,2005)。Williams等(2005)认为基鲁纳磷灰石氧化铁矿和矽卡岩铁矿不属于IOCG矿床,但是他同时又具有IOCG矿床的某些特征,包括:①成矿省内其他类型的矿床较少,②矿床通常与大规模的碱性,特别是含钠的蚀变作用有关,③叠加少量的相关元素,如Cu、Au、P、F、REE等。

基鲁纳地区的元古宙岩石,无论在区域范围内还是在矿区范围内,均受到方柱石化和钠长石化的影响,这一影响与本区的氧化铁矿床的矿化有关(Frietsch,1997)。在本地区具有经济价值的氧化铁矿有Kirunavaara、Leveaniemi、GruvbergetFe、Mertainen、Lappmalmen、Malmberget、Rakkurijoki、Tuolluvaara、Rektorn、Luossavaara、Henry等矿床(图4-27)。区域内铜矿床包括Aitik、Wiscaria(Martinsson,1997)、Oahthavare(Lindblom et al.,1996)和Natanen(Martinssion et al.,2004)以及一些远景区(图4-27a)。大部分矿床为后生矿床,多产于Karelian绿岩和斑岩群中。

一、地质背景

基鲁纳矿区产于中元古代大陆环境(1.85~1.8Ga,U-Pb法测年,Skiold et al.,1984;Skiold,1984)。围岩为大面积碱性流纹岩、粗面岩和粗安岩火山灰和熔岩流组成,同时一些同成因的侵入岩侵入到大陆沉积盖层中(Geijer,1930;Geijer et al.,1974;Parak,1975a;Frietsch,1979;Forselletal.,1980;Frietsch,1980)。该组地层由Kurravaara砾岩、基鲁纳斑岩、下Hauki组沉积岩和火山岩,以及上Hauki组沉积岩组成(图4-28;表4-3)。这一火山-沉积岩带内侵入有几组正长岩、花斑岩和花岗岩,含磷磁铁矿石产于基鲁纳斑岩和下Hauki组层内。该地层最底部为砾岩地层,砾岩地层之上为基鲁纳绿岩———基鲁纳地区的元古宙岩石,无论在区域范围内还是在矿区范围内,均受到方柱石化和钠长石化的影响,这一影响与本区的氧化铁矿床的矿化有关(Frietsch,1997)。

图4-27 瑞典北部地区铁和铜矿床分布图

不同组合侵入岩均与造山事件相对应,Haparanda岩体主要存在于Norrbotten北部地区的最东部,由一套岩石组成,即从辉长岩和闪长岩到二长岩-二长闪长岩、花岗闪长岩和一些花岗岩,其化学特征从碱质-钙质到钙碱系列。条纹长石-二长岩岩体在该区最为发育,由形成于1.88~1.86Ga的二长岩和石英二长岩组成(Bergman et al.,2001)。辉长质侵入体可能与条纹长石-二长岩体和那些正常发育于二长花岗岩侵入岩边界的岩石有关。同/后碰撞深成岩代表了侵入事件的后期阶段对本区的影响作用。花岗岩-伟晶岩岩体的年龄为1.81~1.78Ga,伟晶岩的分布面积较广,通常与主要的二长岩有关。该区的变形变质作用很可能发生于这一时期。

构造运动序列开始于古元古代的古生代地壳的伸展作用和裂谷作用。造山作用始于裂谷作用之后,在与俯冲作用有关的构造环境下,早期形成的陆/岛弧与古生代形成的克拉通碰撞,发生造山作用。大约于1.93Ga,在大陆裂谷之下开始了南西向的俯冲作用(Juhlin et al.,2002)。1.93~1.87Ga之间,古老克拉通、造山带与Svecofennian火山岩带一起形成了新的大陆地壳(Mellqvist et al.,1999)。在碰撞期间,变沉积岩和沉积岩由于不同地块之间的挤压作用发生变形,随后,岛弧与微陆块再次发生碰撞,推覆于古生代克拉通之上(Juhlin et al.,2002)。

第二阶段的碰撞作用期间,在右旋转换挤压体系作用下的变形作用可能导致了东西向至北东-南西向的地壳缩短。随后,局部堆积的透镜体和盖层逆冲于古生代大陆地壳之上。Svecofennian造山事件期间的岩浆作用和构造活动是引起热液蚀变和成矿事件的最可能诱导因素,在空间上这一岩浆和构造活动带似乎与主要的变形带相对应。最后,在地壳伸展期(1.6~1.5Ga,Korja et al.,1993)以非造山岩浆作用为特征的下地壳移除作用使得地壳沿东西走向伸展变薄。

图4-28 基鲁纳地区地质简图

表4-3 基鲁纳地区前寒武纪地层表

二、矿床地质特征

基鲁纳矿床位于残余的太古宙芬诺斯堪迪亚地盾南部边缘,矿床产于由古元古代盖层和大面积的似花岗岩以及这些地层内发育的一系列长英质火山岩地层中。有关含磷灰石铁矿矿体与围岩之间的关系问题先后引起了许多地质工作者的兴趣,例如Geijer(1910)对这些矿床及其围岩进行了较为详尽的描述,他也因此成为这类含磷灰石铁矿床研究的权威。随后,他穷其毕生精力对基鲁纳地区的地质工作进行研究,作出了不可磨灭的贡献。Odman(1957,转引自Forsell,1987)和他的助手们在20世纪50年代的地质工作完成了Norrbotten郡第一份现代地质图,引起了有关基鲁纳地区地层层序问题探讨的再次升温。在20世纪六七十年代,许多工作者对于基鲁纳含磷铁矿的成因问题展开了激烈的讨论。直到1992年Hitzman等(1992)的有关IOCG矿床论述的发表,才使得基鲁纳矿床的成因认识有了新的进展。有关该地区部分含磷灰石铁矿床的特征如表4-4所示。

表4-4 基鲁纳矿区含磷灰石铁矿床地质特征统计表

续表

注:资料来源于瑞士地质调查局矿床数据库:http://www.sgu.se/sgu/en/service/kart-tjanststarte.html。

(一)围岩特征

基鲁纳地区铁矿床的围岩地层主要为中性到长英质火山岩,该围岩火山岩在区内大约有6km厚,整个火山岩地层均发生铁氧化物矿化。Kiirunavaara和Luossavaara矿床产于火山岩与沉积岩接触带之间,矿体下部由斑状、粗面状沉凝灰岩、熔岩流及其相关的侵入岩组成,上部以流纹质沉凝灰岩和凝灰质沉积岩为主的岩石组成(Frietsch,1979)。本区的大多数火山岩均发生过蚀变,因此围岩的原始化学特征尚不能完全确定,可能为富碱质火山岩。许多研究者认为矿床形成与斑岩有关。火山活动与矿体之间具有紧密关系,如①Kiirunavaara矿体被正长岩、次流纹岩和镁铁质岩脉所切割,②含有磁铁矿碎屑的岩脉和岩床本身就含有磁铁矿脉,③Hauki地层沉积岩中含有氧化铁矿石碎屑(Geijer,1960;Geijer et al.,1974;Frietsch,1979)。尽管下Hauki地层发生过强烈的片理化作用破坏了大多数的岩石原始结构,但是局部仍然保留完好。Nukutusvaara矿床以东发育多孔状构造的岩石,与Luossavaara-Kiirunavaara矿床的结核状正长斑岩很相似。在Nukutuscaara矿床内同样发育有像Luossavaara-Kiirunavaara矿带内发育的正长斑岩,并且这两个矿区内的正长斑岩内的磁铁矿具有相似的微量元素含量特征(表4-5)。两个矿区矿石和正长斑岩之间相似的岩性特征和微量元素含量使得矿石与地层之间的相关性很难确定。

表4-5 磁铁矿和围岩正长斑岩中微量元素含量w(B)/10-6

通过对Luossavaara-Kiirunavaara矿区和下Hauki矿正长斑岩之间的微量元素对比,发现下Hauki正长斑岩为富钾岩石,而Luossavaara-Kiirunavaara矿区的正长斑岩为富钠岩石。碱金属含量的不同可能与发育于PerGeijer矿区和Hauki地区之间的富钾熔结凝灰质火山岩有关。褶皱过程中形成发生的熔结凝灰岩的钾长石活化作用产生下Hauki地层的片理化特征,并导致地层内部钾交代作用。

(二)矿体特征

基鲁纳含磷磁铁矿主要为不规则状,如球状、透镜状、长条状、板状,部分地段为网脉状,该矿体类型有时被称为矿石角砾岩,与围岩地层呈整合接触(图4-28)。根据矿体的位置和磷的含量可将该含磷磁铁矿体划分为两类,第一类包括Kiirunavaara和Luossavaara磁铁矿床,产于正长斑岩和含石英斑岩之间的接触部位。这些矿床的平均磷含量小于1%。另一组包括许多小型矿床,总体称其为“PerGeijer矿床”,这些矿床的磷含量为3%~5%。他们产于含石英斑岩和上覆的下Hauki组之间的接触部位(图4-28)。Kiirunavaara矿体主要由块状磁铁矿组成,与之共生的矿物有磷灰石、阳起石和少量石英。在块状矿体顶部和边部的矿石角砾岩逐渐由磁铁矿-磷灰石±阳起石±石英带向流纹岩中浸染状和脉状磁铁矿-磷灰石±阳起石转变。另外,均质不含磷的磁铁矿(B矿带)和层状富含磷灰石层磁铁矿(D矿带)之间为突变接触关系。实际上,在Luossavaara和PerGeijer矿床中也存在层状含磷灰石磁铁矿石。在Kiirunavaara和PerGeijer矿区,纯磷灰石层(0.1~0.5m厚)也很常见。

1.矿石矿物特征

基鲁纳矿床矿石矿物以磁铁矿铁矿为主,在某些矿床的局部发育有赤铁矿,其次为磷灰石、阳起石-透闪石和透辉石。以磁铁矿为主的矿床(PerGeijer、Nukutusvaara、Rektor、Lapp)与富磷灰石铁矿床(Luossavaara、Kiirunavaara)具有相似的岩性特征。Luossavaara-Kiirunavaara和PerGeijer矿区同样存在两个世代的磷灰石,一种为原生磷灰石,为灰色细粒(0.05~0.15mm),呈浸染状产于相同粒级的磁铁矿中,通常具有明显的纹层状结构。另一种为先存的磷灰石经重结晶作用而来的磷灰石,这类磷灰石存在许多中间转换类型,总体来说为粗粒,呈红色或绿色的细脉和脉状。在特殊情况下,存在以磁铁矿为角砾,以磷灰石为基质的角砾岩。在Kiirunavaara矿区北部100多平方米的区域内发育有红色、粗粒的(达1cm长的棱柱体)不含磁铁矿的磷灰石。此外,另一种典型的磷灰石与磁铁矿共生的实例为“骨骼矿”,例如在Luossavaara-Kiirunavaara和PerGeijer矿区均可见到针状磁铁矿产于磷灰石基质内形成的这类“骨骼矿石”。Luossavaara-Kiirunavaara矿区的脉石矿物为少量的阳起石和方解石,黑云母虽然很常见,但是含量却非常少。在PerGeijer矿区方解石为常见的矿物,方解石是浸染状矿石中的常见矿物,同时在不含磷的矿石中也或多或少的存在水平薄层状的方解石脉。在矿区的某一部位的底板围岩以上20m处,发现了一个2m厚的方解石层,被厚度为3m的角砾状方解石铁矿床所覆盖。在Kiirunavaara矿区北部B矿带发育有薄的硬石膏夹层(厚为1~10cm)。

2.围岩蚀变

基鲁纳矿区围岩地层蚀变广泛,并且蚀变作用与埋深之间存在一定的关系,表现出由深部钠质(富钠长石)的蚀变向中部钾质蚀变(钾长石+绢云母)再向浅部绢云母和硅质蚀变(绢云母+石英)转化的蚀变规律。如Kiirunavaara矿区,深度2~6km,蚀变类型为钠化,蚀变矿物组合为磁铁矿-磷灰石-阳起石-钠长石;PerGeijer矿区,深度250m~1.5km,蚀变类型为钾质/绢云母化,蚀变矿物组合为赤铁矿-磁铁矿-绢云母-碳酸盐-钾长石-石英-磷灰石;在Haukivaara矿区深度0~250m之间,蚀变类型为水解化和硅化,蚀变矿物组合为赤铁矿-石英绢云母-重晶石-萤石-碳酸盐。

围岩火山岩主要的蚀变组合为磁铁矿-钠长石-阳起石-绿泥石。区内围岩火山岩中的斜长石大部分转变为钠长石。在Kiirunavaara和Luossavaara矿体之下,磁铁矿±钠长石±阳起石脉较多。Kiirunavaara矿体和围岩之间为一厚1~50cm的含少量榍石的角闪石层(Geijer et al.,1974)。封闭于矿体内部的残留粗面岩和流纹岩通常都转变成了钠长岩。

基鲁纳含磷灰石铁矿的斑岩围岩受到几种类型的蚀变影响,其中发育最为广泛的蚀变是碱质交代作用。Kiirunavaara和Luossavaara矿床中围岩正长斑岩具有富钠特点,这可能是一种次生产物(Gei-jer,1910)。这种富钠正长斑岩含有杏仁状榍石。Kiirunavaara矿床围岩中的正长岩含榍石,这些榍石为交代长石和地幔磷灰石的产物。下Hauki矿区中岩石同样受到强烈围岩蚀变的影响,主要为硅化和绢云母化,同时伴随有少量的其他蚀变,如赤铁矿化、方解石化、磷灰石化、重晶石化、褐帘石化、电气石化、黄铜矿化、斑铜矿化、辉铜矿化和萤石化等(Geijer,1910;Parak,1975;Frietsch,1979)。

三、地球化学特征

(一)化学特征

基鲁纳矿区磁铁矿中稀土氧化物平均含量为0.7%(Parak,1973,1975a,1985)。稀土元素主要存在于磷灰石中,有少量则存于矿区内分布不均的独居石中。矿区内赤铁矿中的稀土氧化物的平均含量为0.5%,主要存在于磷灰石中。基鲁纳矿石中金含量测试较低,但少量磁铁矿和赤铁矿样品测试结果显示,金含量大于2×10-6。铁矿中磷灰石的稀土含量为1250×10-6~6700×10-6,(La/Yb)N=3~7,Eu/Eu*=-2.5~-0.67,为Eu的负异常。富磷矿石和贫磷矿石中磷灰石稀土元素配分模式相似。磁铁矿中稀土元素含量较低,为5×10-6~110×10-6,但是磁铁矿和磁铁矿中磷灰石以及中性长英质火山岩具有相似的稀土配分模式,说明三者存在成因联系(Rudyard et al.,1995)。

(二)温度和盐度

基鲁纳矿区氧同位素地球化学数据揭示磁铁矿的形成温度大于为600℃(Cliff et al.,1990)。Kiirunavaara矿床稳定同位素结果显示出硫源于低温热液事件(70~250℃)的晚期阶段。这与Kiirunavaara矿床磷灰石流体包裹体均一温度测试结果相匹配。因此,已获得的证据显示,该区矿床成矿温度为低于岩浆的热液温度范围,早期埋藏较深的磁铁矿显示出较高的成矿温度,其变化范围较大(多数为150~400℃,最高可达600℃),晚期埋藏较浅的赤铁矿显示出较低的成矿温度(大多为100~200℃)。磷灰石流体包裹体比较复杂,且多为次生包裹体,其封闭流体的盐度大约为19%,Smith等(2005)测试成矿晚阶段石英脉流体包裹体的均一温度为100~150℃,盐度为32%~38%。磷灰石流体包裹体反映出磷灰石经过重结晶作用,正好与后期铁矿石导致稀土元素重新分配的热液事件相一致。同位素研究结果显示,对磷灰石的流体包裹体进行详细研究将可能发挥较好的效果。

(三)同位素特征

基鲁纳磁铁矿和赤铁矿矿体中碳酸盐岩稳定同位素研究结果显示,δ13C值为-3~-5,虽然显示出较奥林匹克坝地区的IOCG矿床具有更多的岩浆参与特征,但总体上还是与其具有相似的特征。成矿晚期阶段石英脉流体卤族元素Br/Cl对数比值范围大致为-2.5~-3.7,总数范围在-2.8~-3.5之间,该数据说明Norrbotten地区成矿流体为岩浆来源,而非变质蒸发岩来源。富Br样品的存在可能暗示了岩浆流体与围岩变沉积岩之间发生了水岩反应。含磷氧化铁矿石内晚期石英脉流体氯同位素经大洋氯同位素平均值标准化后其范围为-5.63~-0.99,该氯同位素结果与先存的流体包裹体、岩石、矿物以及天然孔隙水样品测试结果相比相对富35Cl,而岩盐溶解作用不能形成37Cl亏损的流体,故该地区的矿床形成可能与蒸发岩无关(Smith et al.,2005)。

(四)成矿时代

Cliff等(1990)通过对切割矿体的花斑岩脉测试结果显示,基鲁纳矿区成矿最小年龄为1.88Ga,该年龄与围岩地层的形成年龄(1.9Ga)大体一致(Skiold et al.,1984)。U-Pb和Rb-Sr同位素重置年龄显示,基鲁纳矿区大致于1.54Ga再次受到次级事件的影响,这与本区发育的晚期花岗侵入体相对应(Welin et al.,1971)。单颗粒磷灰石裂变径迹测年结果显示Tuolluvaara矿体年龄为486±95Ma。但是从火山岩与矿化之间的地质特征来看,成矿作用应与火山岩有关,测年结果可能与后期变质作用有关。Smith等(2005)采用激光剥蚀ICP-MS对榍石进行U-Pb测年,获得3组年龄数据,第一组最老年龄为2.07~2.00Ga,代表基鲁纳地区围岩沉积盖层的年龄,这比以前认为的更老一些;第二组中间年龄为1.875~1.820Ga,该年龄与Cliff等(1990)测定的年龄相一致,代表主要成矿年龄;第三组年龄为1.790~1.700Ga,该年龄与长期活动的区域规模构造运动引起的成矿后变质作用有关。

四、矿床成因认识

过去的一百多年来,对于基鲁纳含磷灰石铁矿床的成因认识存在许多争论。早期的成矿模型完全建立在矿石与围岩之间野外相互关系的基础之上。岩浆特征和沉积特征分别出现于含矿地层和矿体的不同部位,而这些不同部位的含矿地层和矿体正是解释野外资料的有利证据。最早矿床被解释为沉积成因,后来被认为是火山热液成因、岩浆分异作用经后期喷出岩或侵入岩所改造(Geijer,1931a;Nystrom,1985;Nystrom et al.,1994)、与到后期阶段岩浆流体有关的交代作用成因(Bookstrom,1995)、喷流沉积成因(Parak,1975a;1975b)以及形成于特定构造伸展背景下的岩浆成因(Hitz-man et al.,1992)。根据Geijer(1910)的观点,矿床是岩浆分异的产物,后来,Geijer(1919)修正了自己早期的假设,提出了所有铁矿的侵入作用成因观点。Parak(1975a)认为铁矿是火山喷流沉积的产物。在20世纪60年代的大规模勘探活动中,LKAB公司对基鲁纳地区的地质认识取得了很大的进展,发现了一些新的铁矿和铜矿,这些铁矿床为连续分布,向东倾斜的层控矿床。Hitzman等(1992)通过对诸如奥林匹克坝、基鲁纳、东南密苏里、白云鄂博等矿床的研究,提出关于IOCG矿床的类型划分观点,并提出基鲁纳含磷灰石铁矿床的热液成因观点。铁的氧化物和磷灰石的化学数据和结构特征(如磁铁矿特殊的柱状结构和树枝状结构),均进一步支持了岩浆成因观点。许多不同解释之间的最大分歧在于,是否贫磷的Kiirunavaara和Luossavaara矿床和富磷的PerGeijer矿床具有各自不同的、可对照的成矿模式。

五、矿床实例

(一)Kiirunavaara矿床

1.成矿围岩

Kiirunavaara矿床是基鲁纳地区最大的矿床,其容矿围岩主要为前寒武纪地层。矿体呈板状产于火山岩与沉积岩接触带之间,矿体底板为粗面安山质熔岩,传统上划分为正长斑岩;顶板为流纹英安质熔结凝灰岩,通常被称为石英斑岩(图4-28)。本区的大多数火山岩均发生过蚀变,可能为富碱质火山岩。围岩蚀变广泛,例如在底板火山岩围岩内矿化侧向延伸可达数千米,向下延伸可达5km。

2.矿体特征

Kiirunavaara矿床矿体呈板状产于层状火山岩地层当中,长度约4km,平均宽度为90m,钻孔深度为1100m,估计延深可达2000m,矿体走向近南北向,倾向向东,倾角为60°,主要矿石类型为磁铁矿,细分为两个类型,富磷灰石矿石(D矿)和贫磷灰石矿石(B矿),D矿磷的含量为0.4%~4%,铁品位为60%,B矿磷含量小于0.1%,铁品位为67%(Malmgren,2007;Lupo,1997)。

3.矿石矿物

Kiirunavaara矿床主要矿石矿物为块状磁铁矿,其次为与之共生的磷灰石、阳起石和少量石英。在块状矿体顶部和边部的矿石角砾岩逐渐由磁铁矿-磷灰石±阳起石±石英带向流纹岩中浸染状和脉状磁铁矿-磷灰石±阳起石转变。浸染状黄铁矿和少量的黄铜矿产于矿体底部的块状磁铁矿和矿体附近围岩中的磁铁矿和磁铁矿-阳起石矿脉中,该硫化物切穿磁铁矿体。

4.围岩蚀变

围岩蚀变类型主要为钠化,蚀变矿物组合为磁铁矿-磷灰石-阳起石-钠长石。围岩火山岩地层主要的蚀变矿物组合为磁铁矿-钠长石-阳起石-绿泥石。区内围岩火山岩地层中的斜长石大部分转变为钠长石。Kiirunavaara矿体和底板围岩之间存在一厚0.2~0.4m的斜长角闪岩和阳起石矽卡岩带,顶板围岩和矿体之间为0.1~1.5m厚的富高岭石和绿泥石层,矿体之下磁铁矿±钠长石±阳起石脉较多。存在于矿体内部的残留粗面岩和流纹岩通常发生钠长岩化。

5.化学特征

Kiirunavaara矿床铁矿石主要由磁铁矿-赤铁矿-磷灰石组成,矿石特征为富磷灰石,含有少量的Cl和OH-。磷含量高低变化较大(0~4%),Ti(榍石或偶尔存在的钛铁矿中)和S(主要为黄铁矿中)的含量很低(<1%)。

6.成矿时代

Cliff等(1990)通过测定切割矿石的花岗斑岩岩墙的时代,获得其成矿年龄的上限为1.88Ga,与容矿岩石的年龄相一致(1.9Ga,Skiold et al.,1984)。U-Pb和Rb-Sr同位素体系显示,该区受1.54Ga的第二次热事件的影响,这个时代与区域上晚期花岗质侵入体相对应(Welin et al.,1971,转引自Cliff et al.,1992)。

7.矿床成因认识

岩浆成因解释了Kiirunavaara矿区底板正长岩杂岩体内富含浸染状磁铁矿这一特征,在有些地区磁铁矿含量较高,因此Geijer(1931,转引自Cliff et al.,1992)称其为“磁铁正长岩”,并认为底板围岩的正长岩是成矿金属的主要来源。但是Parak(1985,转引自Cliff et al.,1992)认为该矿床为喷流沉积热液矿床,铁来源于下伏的基鲁纳绿岩。Cliff等(1992)通过对围岩和矿石的Sm-Nd同位素测试结果及稀土元素分析排除了成矿物质来源于基鲁纳绿岩的可能性。认为磁铁矿的成矿物质可能为古老地壳,它的Nd同位素组成与古老地壳的同位素组成相似。

基鲁纳Kiirunavaara矿床位于太古宙基底西南边缘地带,总体上可能为大西洋活动大陆边缘的一部分。该矿床的成矿作用可能发生于这一岩浆形成、冷却时期。在矿床形成和发生变形以后,沉积盖层覆盖于瑞典北部地区,因此该地区的铁矿床在形成以后大部分处于深埋状态。直到1.5Ga的地壳上隆和剥蚀作用,使得矿床接近于地表。同时该时期的构造活动导致了大规模热液流体的形成,从而Rb-Sr、U-Pb同位素体系也建立新的平衡体系。

(二)Aitik矿床

Aitik矿床是瑞典最大的铜矿床,位于Norrbotten成矿省内Gallivare东南15km处,同时也是欧洲最重要的生产铜矿石矿床之一。从1968年开始矿山生产到2002年,Ailik矿床已经生产了约3.8亿t矿石,其平均品位为Cu0.39%,Au0.21×10-6,Ag3.9×10-6。保有储量为2.26亿t矿石,平均品位为Cu0.37%,Au0.2×10-6,Ag3×10-6

1.围岩特征

Aitik露天采场规模为2500m×800m,根据构造界线和含铜的品位将矿区划分为顶板围岩、矿体和底板围岩。顶板围岩和矿体围岩主要为长石-黑云母-角闪石片岩和斑状石英二长闪长岩。围岩地层中铜的含量小于0.26%,其余矿体的界线为发生强烈钾长石和绿帘石化蚀变的断裂带。围岩中石英二长闪长岩的锆石U-Pb年龄为1.87±23Ga(Witschard,1996;Wanhainen et al.,2003)。矿带主要由含石榴子石的黑云母片岩和片麻岩组成,顶板围岩以白云母(绢云母)片岩为主(图4-29)。强烈的蚀变和变形破坏了岩石的原始特征,但是通过矿区外观察,认为这些岩石原岩为火山碎屑岩Wanhainen et al.,1999)。底板围岩主要由未发生矿化蚀变的长石-黑云母-角闪石片岩组成,通过以逆冲断层将其与矿带分开。顶板围岩和矿带中伟晶岩脉分布较广泛,通常沿岩层走向或者横切节理面发育。

图4-29 Aitik矿床平面地质简图

矿区内主要矿物为黄铜矿和黄铁矿,其次为磁铁矿、磁黄铁矿、斑铜矿、辉钼矿和辉铜矿。矿石通常呈浸染状和网脉状产出,底板围岩中也存在这类矿物组合的矿化现象,但未达到开采品位。在几种石英脉以及角闪石、长石细脉中常发育一些硫化物。在采场东南部矿带和底板围岩的接触部位发育有细的石英网脉,石英网脉的厚度变化较大,变化范围为3~30mm,网脉中主要含有黄铜矿和黄铁矿,这种网脉一直向下延伸至斑状石英二长闪长岩地层中。重晶石脉中含有含量不等的磁铁矿和阳起石,偶尔含有黄铜矿和黄铁矿。在矿带内部,伟晶岩脉中通常含有黄铜矿和黄铁矿,偶尔出现辉钼矿。在矿体和底板围岩的接触部位的钾长石和绿帘石蚀变矿物中存在有少量的硫化物。除了铜以外,金也是本区的另一具有经济价值的元素,自然金和金的化合物通常与黄铜矿、黄铁矿共生。

2.围岩蚀变

Aitik矿区发育有广泛的围岩蚀变,矿带内的蚀变主要为黑云母化和绢云母化,伴随有石榴子石变斑晶、石英化和黄铁矿化。钾长石化和绿帘石化主要发育于矿带与围岩接触的断层附近,同时在矿区内部的局部地区也有发育,特别是伟晶岩发育的周围具有明显的钾长石化和绿帘石化。电气石化和方柱石化很少发育,方柱石化出现于矿区北部角闪石岩周围和矿体南部底板围岩侵入体内。

3.地球化学特征

Aitik矿区石英中流体包裹体存在3种类型,第一种类型为与黄铜矿有关的原生包裹体,通常为气液和固体子晶,子晶为石盐或方解石,部分均一温度范围为110~228℃,盐度范围为31%~37%;第二种为与斑铜矿有关的包裹体,通常由水溶液和气泡组成,均一温度范围为100~222℃,盐度范围为17.9%~24.0%,该包裹体与斑铜矿的形成是否有关尚不能确定;第三种为沿颗粒边界和微裂隙成群出现的次生包裹体,在室温下为液相CO2,有时可以出现气相CO2。Aitik矿石形成与底板围岩中于1.89Ga形成的侵入体有关。与黄铜矿的形成有关的流体为高盐度流体,与斑铜矿形成有关的流体为低盐度流体。地质年代学数据显示,北Norrbotten地区存在有1.87Ga和1.77Ga两期主要的成矿事件(Martinsson,2001)。Norrbotten地区的以斑铜矿为主的矿化主要形成于1.77Ga,为切穿石英脉和1.80~1.76Ga形成的伟晶岩晚期成矿阶段(Martinsson,2001)。Aitik矿床流体分别具有斑岩铜矿和IOCG矿床的双重特征,因此成矿流体可能为多来源流体,然而流体中具有高的钙含量,说明成矿流体可能为流经下伏蒸发岩地层的岩浆热液流体(Wanhainen et al.,2003)。

4.矿床成因认识

Aitik矿床的第一个成矿模型是Zweifel(1976)提出的,他认为该矿床为同沉积成因。这种层状早期富集成因的铜矿床被后期的花岗岩侵入体(1.8Ga)所改造。Yngstrom(1986)依据同位素研究提出了Aitik矿化岩浆来源的观点,这一岩浆成因观点后被Monro(1988)进一步发展,认为成矿作用与底板围岩地层中的同造山期石英二长闪长岩有关,他指出热液流体自侵入体中出溶出来沿南北向剪切带形成Cu-Au-Ag矿带。矿床形成后受后期变形变质作用的影响发生过多阶段的再活化作用。

温馨提示:答案为网友推荐,仅供参考
相似回答