1、基本不等式:
√(ab)≤(a+b)/2
那么可以变为 a^2-2ab+b^2 ≥ 0
a^2+b^2 ≥ 2ab
ab≤a与b的平均数的平方
2、绝对值不等式公式:
| |a|-|b| |≤|a-b|≤|a|+|b|
| |a|-|b| |≤|a+b|≤|a|+|b|
3、柯西不等式:
设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2) 当且仅当ai=λbi(λ为常数,i=1,2.3,…n)时取等号。
4、三角不等式
这个不等式也可称为向量的三角不等式。
5、四边形不等式
如果对于任意的a1≤a2<b1≤b2,
有m[a1,b1]+m[a2,b2]≤m[a1,b2]+m[a2,b1],
那么m[i,j]满足四边形不等式。
参考资料:百度百科-不等式公式
高中常用的不等式公式有:
(1)(a+b)/2≥√ab
(2)a^2+b^2≥2ab
(3)(a+b+c)/3≥(abc)^(1/3)
(4)a^3+b^3+c^3≥3abc
(5)(a1+a2+…+an)/n≥(a1a2…an)^(1/n)
(6)2/(1/a+1/b)≤√ab≤(a+b)/2≤√[(a^2+b^2)/2]
扩展资料:
不等式基本性质:
①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)
⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)
不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号)
不等式两边相乘或相除同一个正数,不等号的方向不变。(相当系数化1,这是得正数才能使用)
不等式两边乘或除以同一个负数,不等号的方向改变。(÷或×1个负数的时候要变号)
参考资料:百度百科---基本不等式
(a+b)/2≥√ab
a^2+b^2≥2ab
(a+b+c)/3≥(abc)^(1/3)
a^3+b^3+c^3≥3abc
(a1+a2+…+an)/n≥(a1a2…an)^(1/n)
2/(1/a+1/b)≤√ab≤(a+b)/2≤√[(a^2+b^2)/2]