求区分极坐标方程和参数方程

如题所述

★x
=
r*Cos(θ),y
=
r*Sin(θ)是极坐标与直角坐标的关系式。
在“r是关于θ的一个方程☆r
=
f(θ)”中的r=f(θ)是极坐标方程。
把☆代入★得到的x
=
f(θ)*Cos(θ),y
=
f(θ)*Sin(θ)
是【以θ为参数】的参数方程。
如果有参数方程x
=
g(t),y
=
h(t),
则是【以t为参数】的参数方程。
比如:■r
=
2
Sin(θ)是极坐标方程;
可得:□x
=
2
Sin(θ)
Cos(θ),y
=
2
Sin²(θ)是参数方程;
利用关系式x²+y²=r²及=rsinθ由■可得●x²+y²=2y是直角坐标方程;
而●即x²+(y-1)²=1从中可得参数方程◆x=cost,y=1+sint。
这样就有前后四个方程表示同一曲线,
其中一个极坐标的,一个直角坐标的,两个参数方程,
它们画出来的图都一样。
其中的方程□与◆可以作为原问题中的【两个】参数方程的例子。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-04-21
设椭圆参数方程x=acosθ,y=bsinθ
向量oa坐标为(acosθ,bsinθ),ob坐标为(acos(θ+1/2π)),(bsin(θ+1/2π))即为(-asinθ,bcosθ)
∴s⊿abc=1/2×(√a²cos²θ+b²sin²θ)×(√a²sin²θ+b²cos²θ)
接着只要求关于θ的函数的最大和最小值就行了
相似回答
大家正在搜