(1)当x>-1时,f(x)≥
当且仅当e
x≥1+x
令g(x)=e
x-x-1,则g'(x)=e
x-1
当x≥0时g'(x)≥0,g(x)在[0,+∞)是增函数
当x≤0时g'(x)≤0,g(x)在(-∞,0]是减函数
于是g(x)在x=0处达到最小值,因而当x∈R时,g(x)≥g(0)时,即e
x≥1+x
所以当x>-1时,f(x)≥
(2)由题意x≥0,此时f(x)≥0
当a<0时,若x>-
,则
<0,f(x)≤
不成立;
当a≥0时,令h(x)=axf(x)+f(x)-x,则
f(x)≤
当且仅当h(x)≤0
因为f(x)=1-e
-x,所以h'(x)=af(x)+axf'(x)+f'(x)-1=af(x)-axf(x)+ax-f(x)
(i)当0≤a≤
时,由(1)知x≤(x+1)f(x)
h'(x)≤af(x)-axf(x)+a(x+1)f(x)-f(x)
=(2a-1)f(x)≤0,
h(x)在[0,+∞)是减函数,h(x)≤h(0)=0,即f(x)≤
(ii)当a>
时,由(i)知x≥f(x)
h'(x)=af(x)-axf(x)+ax-f(x)≥af(x)-axf(x)+af(x)-f(x)=(2a-1-ax)f(x)
当0<x<
时,h'(x)>0,所以h'(x)>0,所以h(x)>h(0)=0,即f(x)>
综上,a的取值范围是[0,
]