巴拿赫空间的空间简介

如题所述

空间X,若有从X到R的函数‖x‖使得:①‖x‖≥0,‖x‖=0必须且只须x=0,②对α ∈K,有‖αx‖=α‖x‖,③‖x+y‖≤‖x‖+‖y‖,则称X为线性赋范空间,而称‖x‖为范数。 显然,范数这概念是Rn中向量长度概念的推广。如同有理数系可完备化为实数系,任何线性赋范空间也可按照距离d(x,y)=‖x-y‖作为度量空间而完备化。
完备的赋范线性空间称为巴拿赫空间。例如,设Ω为紧豪斯多夫空间,令C(Ω)表示Ω上一切实(或复)值连续函数的全体,则C(Ω)关于范数成为一个巴拿赫空间。再如,设(Ω,μ)是正测度空间,令Lp(Ω,μ)表示Ω上一切p(p≥1)次可求和函数的全体,则Lp(Ω,μ)关于范数成为一个巴拿赫空间。特别取Ω={1,2,3,…},μ(n)=1(当n=1、2、3、…)则相应的Lp(Ω,μ)成为满足条件的数列的全体,而相应的范数为。一般记这个特殊的Lp(Ω,μ)为lp。还如,设(Ω,β,μ)是正测度空间,对Ω上可测的函数?(t),如果有正数α,使于Ω几乎处处有│?|(t)|≤α,则称 ?(t)为本性有界的函数,而记上述诸α之下确界为。令L∞(Ω)表示Ω上之本性有界函数的全体,则L∞(Ω)关于范数成为一个巴拿赫空间。特别对Ω={1,2,3,…}而μ(n)=1(n=1,2,3,…)则相应的L∞(Ω)即有界数列的全体,而相应的范数为。一般记这个特殊的L∞(Ω)为m。
基  作为完全就范直交函数系的推广,设是巴拿赫空间X中的序列,如果对每个x ∈X 都恰有一数列,使,则称为X 的基,而称X为有基的空间。凡有基的空间一定是可分的,对于许多可分空间,人们具体地构造出它们的基。但是,是否每个可分的巴拿赫空间都有基的问题,直到1973年才由P.恩夫洛举出反例。确有可分而没有基的巴拿赫空间。 设X与Y都是巴拿赫空间,若T是从X到Y的有界线性算子,且TX=Y,则T变X的开集为Y中的开集。这在有限维空间是平凡的,但在无限维空间却是极为深刻有力的工具。它有下列重要推论。
开映射定理还有一个关于闭算子的重要推论。设y=Tx是线性的,若从 恒有x0∈D(T)且,则称T为闭算子。闭算子在应用上是非常重要的概念。表面上,闭性与连续性很相似,其实差异不小,因为连续性是从较少的假设xn→x0到更多的结论且。一般称X×Y中之G(T)={<x,Tx>;x∈D(T)}为 T的图像。易见T是闭算子,则G(T)按范数‖<x,y>‖=‖x‖+‖y‖是闭的点集。 设X与Y都是巴拿赫空间,若T是从X到Y的线性算子,则T是有界的必须且只须G(T)是闭的。 共轭算子 设X与Y都是巴拿赫空间。若线性算子T的定义域D(T)在X中稠密,而T 的值都在Y中,如果对有x*∈X*使当x∈D(T)时,y*(Tx)=x*(x)则x*由y*惟一确定,记作T┡y*=x*,一般称T┡为T的共轭算子或对偶算子。特别当T是从X到Y的有界线性算子时,则T┡也是有界的,且‖T┡‖=‖T‖。显然,共轭算子是转置矩阵的推广,所以它自然地在研究方程Tx=y时起着重要的作用。 设A为巴拿赫空间X上的线性算子,称N(A)={x;Ax=0}为A的零空间,R(A)={y;y=Ax,x∈D(A)}为A的值域。从线性方程组的解,已经看到A与A┡之值域与零空间的密切关系,后来在弗雷德霍姆理论中又再次看到这点。 对点集,所谓M在X*中的零化子即 而于点集,则G在X中之零化子即。设A为巴拿赫空间上有界线性算子,则,,,。若又设X 自反,则。 闭值域定理  设X与Y是巴拿赫空间,而T是从X到Y的闭线性算子,且,则下列命题等价:①R(T)在Y 中是闭的,②R(T┡)在X*中是闭的,③④。

温馨提示:答案为网友推荐,仅供参考
相似回答