空气动力学在F1赛车的应用?

如题所述

F1空气动力学

了解飞机原理的人都知道,飞机能飞上天全都因为其在起飞加速过程中产生的升力,将其送上蓝天,这就是通常所研究的空气动力学。
而F1赛车与飞机不同,F1赛车对于空气动力学应用的追求是完全反向的,为了“防备”赛车在高速行驶中飞起来,需要通过一些空气动力学部件给赛车一定下压力,同时为赛车提供抓地力。
我想每个人都对空气有一些感性的认识。当你坐在疾驰的汽车中,将手伸出车外,试着将手与迎风方向的角度不断调整,你会感觉到空气的升力和下压力。还可以做这样一个实验,找一张A4尺寸(297X210毫米)的纸,用食指和拇指捏着两个长边,让短边贴着自己的嘴唇,此时纸是自然垂下去的,如果对着纸的上表面吹气,会发现纸飘起来了。很显然是空气在对抗重力。如果将这个原理反向应用于跑车和赛车,空气会将汽车紧紧压在地面上,给汽车足够的抓地力。
F1赛车风驰电掣的速度,能在5秒之内瞬间加速到200km/h以上,最大过弯侧向加速可达4个G,极速最高超过350km/h。怎么样,这种感觉,是不是就像要飞起来了?而这样高的速度与过弯能力,除了需要优异的悬吊设置来让轮带尽可能的保持与跑道路面接触之外,也需要足够的下压力来产生足够的摩擦力,否则空有强大的马力,在过弯时将无从发挥,因此空气动力学设计的优劣已成为今日F1决胜的关键之一。
空气动力学在F1赛车上的应用主要体现在两个方面:一是让定风翼产生的下压力为轮胎提供足够的抓地力,另一个则是尽量减少赛车行驶中的空气阻力。
在早年的F1比赛中,赛车与普通汽车看起来差别不大,但自从空气动力学引进后,F1赛车开始出现了显著变化,首先就是定风翼的产生。看见那巨大的定风翼,可千万别以为它只是用来做广告的,对于F1赛车,它可相当于飞机的翅膀。而赛车定风翼与飞机机翼的最大区别在于当飞机机翼因为飞机提速而产生足够升力时,赛车定风翼则将机翼的升力工作原理进行倒置。反向安装的前、后定风翼将会使空气产生下降的力量,也就是我们所称的“下压力”,以保证高速行进中的赛车“抓住”地面不会引起大幅摆动甚至是漂浮乃至侧翻。一辆F1赛车的定风翼能产生相当于赛车重量3.5倍的下压力。
从上世纪60年代起,定风翼开始应用于F1赛车上,导致F1赛车的速度普遍得到提高,但由于各个车队在定风翼的使用上缺乏足够的安全保障,随之而来的是事故的增加,于是1970年F1规则对于定风翼的尺寸和应用作出了限制,这种限制一直持续到现在。
赛车定风翼解决了下压力的问题,但是,何在产生下压力的同时又不增加空气阻力呢?这是动力学家在设计当今F1赛车的过程中面临的又一个基本的挑战。
赛车定风翼处于不同角度下产生的下压力是各不相同的,而前后翼的角度和赛道有直接的关系,因为空气的阻力和下压力是成反比例的,如果定风翼角度小,那么赛车的空气阻力就小,最高速度就大,但是赛车缺乏下压力和稳定性;相反,如果定风翼角度大,那么赛车的阻力就大,最高速度受影响,但是赛车在弯道的抓地力就强。所以,根据赛道的不同,定风翼设置的角度也不同。一般来说,如果赛道直道长,例如德国霍根海姆和意大利蒙扎,那么就调小角度;如果赛道弯道多,例如摩纳哥蒙特卡洛,则调大角度。
为了模拟赛车比赛时的空气动力学效果,几乎所有的F1车队都斥巨资修建风洞。在几乎24小时不停歇运转的风洞中,工程师们所研究的内容本身就是矛盾的,因为减少空气阻力必然影响下压力,他们所能做的只能是寻找一个美妙的平衡点。“空气动力学是赛车的最核心部分,而风洞是研发一辆性能优异赛车的最重要工具。”索伯车队老板皮特·索伯一语中的。F1车队每年都会花上300万美元到1500万美元不等的风洞操作经费来验证空气动力学组件的效率。虽然国际汽联出于减少车队成本考虑一直限制空气动力学的研究,但根本无法遏制车队间的军备竞赛。这或许就是为什么F1是世界上最豪华最昂贵的运动的原因之一吧。
说到空气动力学效率,就是下压力和空气拖放阻力的比例。目标就是要获得最大的抓地力,和最小的拖放阻力。下压力是空气动力学上垂直方向的向下压力总合,这些力量是由前鼻翼和后尾翼所产生,用来把赛车压在地面上,下压力越大,赛车在跑道上的抓地力就越大。
理论上,由前后翼产生的可怕力量,可以让一部F-1赛车抵抗地心引力,让600公斤重的F1赛车在隧道的天花板上倒吊著跑,因为赛车可以产生超过车身重量数倍的下压力。要让F1赛车那样高速的过弯,那么必须把车底、车顶以及车身周围的气流引导到完美的境界!
F1赛车空气力学的最高境界就是“平衡”。F1赛车的抓地力约有1/3是由前轮负担,有超过2/3则是由后轮负担。在前轮采用低下压力的设置可以提高车速,但同时也会提高转向不足的趋势;转向不足就是车头会开始滑向弯外侧。相对的,如果车尾的下压力不足,那么会有转向过度的倾向,车尾就会开始打滑。
这就是空气动力学在F1领域的研究与应用,虽然还不够很深入,虽然还没有很完备,但空气动力学却F1的发展紧密联系着。等待着空气动力学在赛车运用方面的又一次新革命爆发,F1的发展必将取得新的历史性的突破。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2013-11-08
空气动力学简介

空气动力学是流体力学的一个分支,是研究空气或其他气体的运动规律,空气或其他气体与飞行器或其他物体发生相对运动时的相互作用和伴随发生的物理化学变化的学科。它是在流体力学基础上随航空航天技术的发展而形成的一门学科。

空气动力学的研究内容根据空气与物体的相对速度是否小于约100米/秒(即时速360公里/小时,注,也有根据时速400公里为界来划分的), 可分为低速空气动力学和高速空气动力学,前者主要研究不可压缩流动,后者研究可压缩流动。F1赛车的研究的内容便属于前者。此外,根据是否忽略粘性,还可分为理想空气动力学和粘性空气动力学。

F1空气动力学研究的目的与核心手段

在F1中,空气动力学研究的核心目的是在保证赛车获得足够下压力的情况下拥有最小的空气阻力,以提高赛车的速度和高速行驶的稳定性,所有为空气动力学服务的部件被称为空气动力学套件。

据专家统计,目前F1车队在空气动力学上的花费已占到其整个车队年度预算的15%,是仅次于发动机研发的第二大支出项目。在这一笔巨大花费中,其中相当部分投资于风洞建造和测试。风洞 (Wind Tunnel)是一个大型隧道或管道,在管道的中间,安装有一台巨型电扇,它可产生强劲的力流,经格栅等装置整理减少涡流后送入实验段,吹动放置在其中的实验模型。

现代风洞的主要作用是将赛车模型放在内部的钢铁传送带上模拟赛车在路面上的各种情况。 在风洞试验中,巨大碳纤维风扇极限转速可以达到600转/分,驱动引擎的峰值功率更可达到让人咋舌的4000匹马力。如此强大的动力可以在30秒内将静止的空气加速到300公里/小时,此时托起赛车模型的传送带则模拟赛车在比赛中的各种路况和车身姿态,最大限度保证模拟的真实性和有效性。通过对采集到的数据进行综合分析,可以准确地检测到赛车在路面上受到各种因素干扰时的状况。这种模拟可以将赛车空气动力学部件的精度提高30%。如今,领先的F1车队都不惜巨资(一套现代化的F1风洞造价高达4500万美元以上),建设自己专属的风洞,以便及时和准确地研究赛车的气动效果,改进赛车的气动套件,获得克敌制胜的杀手锏。

F1空气动力学研究最核心的三个方面

在空气动力学实验中,工程师们最关注的主要是三个方面的内容:下压力、阻力和灵敏性(敏感度)。巨大的下压力可以提高赛车的过弯极限,但是在理想状态下,下压力的增加不应当带来赛车阻力的增加,但是不可避免的却会牺牲赛车的部分极速。赛车的空气动力学灵敏性(敏感度)则是指赛车的状态性能对于空气动力学环境改变时自身变化的强弱,例如由不平整的赛道路面带来的赛车翼片以及底盘和路面距离之间的频繁变化时,赛车性能所受到的干预强弱。

F1空气动力学逆流而上

每个赛季,国际汽联都会对空气动力学规则做出修改。2004年,赛车的尾翼被减至两片,2005年,前翼高度抬高5厘米,首次限制扩散器高度;2006年,FIA又要求前轮轴心之后330毫米以内,参考面30毫米以上的区域不得安装任何空气动力学套件。虽然FIA不断为技术发展设置障碍,但是F1赛车速度的提高从来就没有停止过,这正是空气动力学的研究价值。
第2个回答  2013-11-08
虽然一级方程式赛车是一种高速汽车,但在机械概念上却较接近喷射机,而非家庭房车。它们巨大的双翼不但具用商业广告牌的作用,同时还可以产生至关重要的「下压力」。这种空气动力会使流经汽车上方的气流将车身向下压,使车子紧贴在车道上。相反地,飞机则是利用巨大的双翼产生「上升力」。

将车身压在车道上可使轮胎获得更大的抓地力,进而在弯道时产生更快的加速度。由于一般普通房车没有下压力,因此甚至无法产生1G(一个重力单位)转弯力。一级方程式赛车能产生4个G的转弯力。

在时速230公里时的状况下,F1赛车上方气流产生的下压力足以使它在隧道里沿着隧道的底部行走。

在设计当今一级方程式赛车的过程中,扮演重要角色的空气动力学家正面临着一个基本的挑战:如何在产生下压力的同时不增加空气阻力。这正是汽车必须克服的问题。

在汽车空气动力设计的过程中,风洞扮演着重要的角色。进行风洞实验时,通常先制作一半体积的模型,而风洞就像一个巨大的吹风机,将空气吹向静止的模型。

虽然这个吹风机的价格非常昂贵,但迈凯伦车队仍然编列四千九百万美元的预算,将在该车队新建的银石(Silverstone)工厂建造一个风洞。

空气动力可以根据不同赛车场的特征而调整。较直的跑道需要较低的下压力设定值,如此可减少阻力,并且有助于赛车提高极速。较曲折的车道需要较高的下压力设定值,如此可令赛车的极速降低。例如,在曲折的Hungaroring车道上,赛车很难达到300km/h的速度,但在Hockenheimring车道上,车速可以超过350km/h。
通常所说的空气动力学研究内容是飞机,导弹等飞行器在名种飞行条件下流场中气体的速度、压力和密度等参量的变化规律,飞行器所受的举力和阻力等空气动力及其变化规律,气体介质或气体与飞行器之间所发生的物理化学变化以及传热传质规律等。从这个意义上讲,空气动力学可有两种分类法:

首先,根据流体运动的速度范围或飞行器的飞行速度,空气动力学可分为低速空气动力学和高速空气动力学。通常大致以400千米/小时这一速度作为划分的界线。在低速空气动力学中,气体介质可视为不可压缩的,对应的流动称为不可压缩流动。大于这个速度的流动,须考虑气体的压缩性影响和气体热力学特性的变化。这种对应于高速空气动力学的流动称为可压缩流动。

其次,根据流动中是否必须考虑气体介质的粘性,空气动力学又可分为理想空气动力学(或理想气体动力学)和粘性空气动力学。

空气动力学是关于空气流过物体的研究,自然是赛车设计中不可缺少的考虑因素,一辆车要想跑得快就必须克服空气阻力,所以车头的体积越小越好,它还需要足够的附着力来应付弯道,这就得靠下压力帮忙。

最简单的发明通常是最好的。60年代晚期,当导流翼出现在F1运动中时,空气动力学的角色变得空前重要起来。这种装备的作用是提高下压力和附着力,从而使车子转弯时打转的可能性减小,速度更快。虽然数年来导流翼的开头有所变化,但它一直被F1赛车所采用。其实这一技术早就被应用于航空领域。飞机用翅膀来获取升力,F1赛车则正好相反:它需要的是负升力,也就是下压力;这是通过把机翼状的导流板颠倒安装来实现的。从侧面看,导流板也是平的一端朝前,但与飞机翅膀不同的是其后端朝上撅起成曲线形,这样气流通过时就会把它朝下压。

赛车工程师经常在最大下压力和最小风阻两方面做出权衡,这一权衡视不同的赛道而定。像摩纳哥和匈牙利这样多弯的赛道对下压力的需求最大,最小的则是直道最长的蒙扎。在那里比赛时技师们会把前翼向后倾斜,减少车头的受力面积以降低风阻。这会使车子的过弯性能受到限制,但它在直道上所达到的空气动力效率远不止弥补于此。

莲花车队的老板科林--查普曼在赛车的后悬挂上安装了尾翼,把下压力进一步提高了180公斤。悬挂因不堪重负而发生断裂,虽然得到加固,但还是在1969年的西班牙大奖赛引发了事故,导致高位尾翼被禁。从那以后,尾翼的安装必须更低更牢固。于是设计者们开始想办法让前后翼发挥出最大的潜力。1970年,莲花车队的赛车上安装了翘起角度更大的板条尾翼,在风阻不变的前提下能产生更大的下压力。他们还利用楔形的底盘进一步提高下压力。1971年无纹轮胎出现,其优越的抓地性能减少了赛车对下压力的需求,也给设计者们增加了一个需考虑在内的不定因素。1977年,查普曼再次取得技术上的重大突破。虽然地面效应不是他发明的,但是由他引进F1的。查普曼和他的设计小组在赛车两边安装侧舱并把底部制成导流板状,然后用活动板条把侧舱与地面之间的间隙密封起来,以防止气流从侧面进入车底。车尾的喉管使车底的空气加速流动,从而形成了一个低压区,由此产生的巨大下压力把赛车吸向地面。采用这项技术的莲花78赛车更主导了1978年的世界锦标赛。到了1980年,地面效应产生的下压力已达车重的两倍,而且随车速的加快成倍增长。一辆 F1赛车能倒着个贴在风洞顶上行驶,因为下压力足以把它按在那里。

由于地面效应产生的下压力如此巨大,F1赛车的翼板不再需要翘的很高,其实气动力效率因此大大提高。事实的确如此:1979年的飞箭A2赛车在比赛中没有使用任何前翼。创意很好,只可惜车子没能有效地利用它的下压力。1983年,地面效应被禁止使用,所有的赛车都必须是平车底;于是前后翼的开头再次成为设计重点。21世纪的F1赛车设计者们正在想方设法让导流板产生更大的下压力,同时尽量少增加风阻。这是一场永无止境的探索。本回答被网友采纳
相似回答