Y(i+1)-1/2yi=0的通解:
为Yi=C(1/2)^i。
现设Yi=AI+B代入求得:A=4/5,B=-8/5。
所以通解为:Yi=C(1/2)^i+4(i-2)/5
扩展资料:
差分方程举例:
dy+y*dx=0,y(0)=1 是一个微分方程, x取值[0,1] (注:解为y(x)=e^(-x));
要实现微分方程的离散化,可以把x的区间分割为许多小区间 [0,1/n],[1/n,2/n],...[(n-1)/n,1]
这样上述微分方程可以离散化为:y((k+1)/n)-y(k/n)+y(k/n)*(1/n)=0, k=0,1,2,...,n-1 (n 个离散方程组)
利用y(0)=1的条件,以及上面的差分方程,可以计算出 y(k/n) 的近似值了。