在△ABC中,内角A,B,C的对边分别为a,b,c,已知sinA=sin(A-B)+sinC.(1)求角B的大小;(2)若b2=a

在△ABC中,内角A,B,C的对边分别为a,b,c,已知sinA=sin(A-B)+sinC.(1)求角B的大小;(2)若b2=ac,判断△ABC的形状;(3)求证:b?sin(C?π6)(2c?a)?cosB为定值.

(1)∵sinA=sin(A-B)+sinC,且sinC=sin[π-(A+B)]=sin(A+B),
∴sinA=sinAcosB-cosAsinB+sinAcosB+cosAsinB=2sinAcosB,
又sinA≠0,
∴cosB=
1
2
,又B为三角形的内角,
则B=
π
3

(2)∵b2=ac,cosB=
1
2

∴由余弦定理b2=a2+c2-2accosB得:ac=a2+c2-ac,
即(a-c)2=0,
∴a=c,又B=
π
3

则△ABC为等边三角形;
(3)∵C=π-(A+B),B=
π
3

∴sin(C-
π
6
)=sin[π-(A+
π
3
)-
π
6
]=sin(
π
2
-A)=cosA,sinC=sin(A+B),
由正弦定理
a
sinA
=
b
sinB
=
c
sinC
化简得:
b?sin(C?
π
6
)
(2c?a)?cosB
=
sinB?sin(C?
π
6
)
(2sinC?sinA)?cosB
=
3
2
cosA
sin(A+
π
3
)? 
1
2
sinA

=
3
2
cosA
1
2
sinA+
3
2
cosA?
1
2
sinA
=1,
b?sin(C?
π
6
)
(2c?a)?cosB
为定值.
温馨提示:答案为网友推荐,仅供参考
相似回答