玻尔兹曼常数是:1.380649×10-23J/K的热力学温度。
玻尔兹曼常量系热力学的一个基本常量,记为“k”,数值为:k=1.380649 × 10-23 J/K,玻尔兹曼常量可以推导得到:理想气体常数R等于玻尔兹曼常数乘以阿伏伽德罗常数(即R=k·NA)。
2018年11月16日,国际计量大会通过决议,1开尔文定义为“对应玻尔兹曼常数为1.380649×10-23J/K的热力学温度” 。新的定义于2019年5月20日起正式生效
玻尔兹曼成就:
玻耳兹曼推广了J.C.麦克斯韦的分子运动理论而得到有分子势能的麦克斯韦-玻耳兹曼分布定律。他进而在1872年从更广和更深的非平衡态的分子动力学出发而引进了分子分布的H函数,从而得到H定理,这是经典分子动力论的基础。
从此,宏观的不可逆性、熵S及热力学第二定律就得以用微观几率态数W来说明其统计意义了,特别是他引进玻耳兹曼常量k而得出S=lnW的关系式。
他又从热力学原理导得了斯忒藩直接从实验得出的斯忒藩-玻耳兹曼黑体辐射公式u=σT4(u为辐射密度;T为绝对温度;σ为一普适常数)。他大力支持与宣传了麦克斯韦的电磁理论,并测定介质的折射率和相对介电常量与磁导率的关系,证实麦克斯韦的预言。
以上内容参考:百度百科-玻尔兹曼常数