偏相关系数是在多要素所构成的系统中,当研究某一个要素对另一个要素的影响或相关程度时,把其他要素的影响视作常数(保持不变),即暂时不考虑其他要素影响,单独研究两个要素之间的相互关系的密切程度,所得数值结果为偏相关系数。
偏相关系数的检验可以有两种方法。一种是t-test,另外一种fisher 转化法。
计算样本的偏相关系数:利用样本数据计算偏相关系数,反应了两个变量间净相关的强弱程度。在分析变量x1和x2之间的净相关时,当控制了变量x3的线性作用后,x1和x2之间的一阶偏相关系数定义。
r值的绝对值介于0~1之间。通常来说,r越接近1,表示x与y两个量之间的相关程度就越强,反之,r越接近于0,x与y两个量之间的相关程度就越弱。
在多元回归分析中,在消除其他变量影响的条件下,所计算的某两变量之间的相关系数。
在多元相关分析中,简单相关系数可能不能够真实地反映出变量X和Y之间的相关性,因为变量之间的关系很复杂,它们可能受到不止一个变量的影响。这个时候偏相关系数是一个更好的选择。
假设我们需要计算X和Y之间的相关性,Z代表其他所有的变量,X和Y的偏相关系数可以认为是X和Z线性回归得到的残差Rx与Y和Z线性回归得到的残差Ry之间的简单相关系数,即pearson相关系数。