连续光谱,线形光谱,吸收光谱什么区别

如题所述

太阳光属于太阳光谱,连续光谱、线形光谱及吸收光谱的具体区别如下:
1、含义上的区别
连续光谱是指光(辐射)强度随频率变化呈连续分布的光谱。根据量子理论,原子、分子可处于一系列分立的状态。两个态间的跃迁产生光谱线。
线状光谱,又称原子光谱,单原子气体或金属蒸气发出光谱均属线状光谱。
吸收光谱是指物质吸收光子,从低能级跃迁到高能级而产生的光谱。
2、产生原理上的区别
连续光谱是原子周围的电子被电离,当高速运动的电子与离子发生碰撞时会产生很大的负加速度,在其周围产生急剧变化的电磁场,也就是电磁辐射。因为碰撞过程和条件以及每次碰撞的能量变化都是随机的,所以产生的是波长不同而且连续的电磁辐射,从而形成连续谱。
线状光谱是原子最外层电子跃迁,能量以电磁辐射形式发射出去。基态原子通过电、热或光致激发光源作用获得能量,外层电子从基态跃迁到较高能态变为激发态,激发态不稳定,经过10-8s,外层电子从高能级向低能级或基态跃迁,多余能量以电磁辐射形式发射得到一条光谱线。
吸收光谱是温度很高的光源发出来的白光,通过温度较低的蒸气或气体后产生的,如果让高温光源发出的白光,通过温度较低的钠的蒸气就能生成钠的吸收光谱。光谱背景是明亮的连续光谱。在钠的标识谱线的位置上出现了暗线。
3、应用上的区别
连续光谱分析技术在水质监测仪器科技领域应用日益发展,基于连续光谱分析的原理,不但可以检测多项水质参数。由于连续光谱承载了被测物质的重要信息,能在宽光谱范围内展开信号处理,以有效消除检测仪器系统误差、减小背景光谱干扰和噪声干扰,极大提高在线水质检测精确度。
线状光谱不同的原子吸收不同波长的光,每种原子都有特征的吸收、发射光谱。所以可以用来鉴别物质。
吸收光谱广泛应用于材料的成分分析和结构分析,以及各种科学研究工作。
参考资料来源:百度百科-连续光谱
参考资料来源:百度百科-线光谱
参考资料来源:百度百科-吸收光谱
温馨提示:答案为网友推荐,仅供参考
第1个回答  2017-12-24
①线状光谱。由狭窄谱线组成的光谱。单原子气体或金属蒸气所发的光波均有线状光谱,故线状光谱又称原子光谱。当原子能量从较高能级向较低能级跃迁时,就辐射出波长单一的光波。严格说来这种波长单一的单色光是不存在的,由于能级本身有一定宽度和多普勒效应等原因,原子所辐射的光谱线总会有一定宽度(见谱线增宽);即在较窄的波长范围内仍包含各种不同的波长成分。原子光谱按波长的分布规律反映了原子的内部结构,每种原子都有自己特殊的光谱系列。通过对原子光谱的研究可了解原子内部的结构,或对样品所含成分进行定性和定量分析。
②带状光谱。由一系列光谱带组成,它们是由分子所辐射,故又称分子光谱。利用高分辨率光谱仪观察时,每条谱带实际上是由许多紧挨着的谱线组成。带状光谱是分子在其振动和转动能级间跃迁时辐射出来的,通常位于红外或远红外区。通过对分子光谱的研究可了解分子的结构。
③连续光谱。包含一切波长的光谱,赤热固体所辐射的光谱均为连续光谱。同步辐射源(见电磁辐射)可发出从微波到X射线的连续光谱,X射线管发出的轫致辐射部分也是连续谱。
④吸收光谱。具有连续谱的光波通过物质样品时,处于基态的样品原子或分子将吸收特定波长的光而跃迁到激发态,于是在连续谱的背景上出现相应的暗线或暗带,称为吸收光谱。每种原子或分子都有反映其能级结构的标识吸收光谱。研究吸收光谱的特征和规律是了解原子和分子内部结构的重要手段。吸收光谱首先由J.V.夫琅和费在太阳光谱中发现(称夫琅和费线),并据此确定了太阳所含的某些元素。本回答被网友采纳
第2个回答  2020-03-09
发射光谱和吸收光谱是一个级别的,发射光谱又分为线状光谱和连续光谱
相似回答