已知抛物线y=ax²+2x+c的图像与x轴交于点A(3,0)和点c,与y轴交于点B(0,3)。

在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?

解:B为(0,3),则c=3,即抛物线y=ax²+2x+3过点A(3,0).

∴0=9a+2*3+3,a=-1.

故抛物线解析式为y=-x²+2x+3.设P为(m,n).

作PE垂直Y轴于E,则PE=m.

S⊿PBE=BE*PE/2=(n-3)*m/2;

S⊿AOB=OA*OB/2=9/2;

S梯形AOEP=(OA+PE)*OE/2=(3+m)*n/2.

∴S⊿ABP=S梯形AOEP-S⊿PBE-S⊿AOB=(3+m)n/2-(n-3)m/2-9/2=(3n+3m-9)/2.

点P在抛物线上,则:n=-m²+2m+3.

则S⊿ABP=[3(-m²+2m+3)+3m-9]/2=(-3/2)(m-3/2)²+27/8.

故第一象限抛物线上存在点P(3/2,27/8),使得S⊿ABP最大,最大值为27/8.

温馨提示:答案为网友推荐,仅供参考
第1个回答  2013-12-15
存在。
设点P(x,y)
过点P做PN⊥x轴于N
S△ABP=S梯PNOB+S△PNA-S△AOB
∵S梯PNOB=1/2(y+3)x=1/2xy+3/2x
S△PNA=1/2(3-x)y=3/2y-1/2xy
S△AOB=1/2*3*3=9/2
∴S△ABP+(1/2xy+3/2x)+(3/2y-1/2xy)-9/2=3/2x+3/2y-9/2
∵y=-x^2+2x+3
∴S△ABP=3/2+3/2(-x^2+2x+3)-9/2
=3/2x-3/2x^2+3x+9/2-9/2
=3/2x-3/2x^2+3x
=-3/2x^2+9/2x
S△ABP=-3/2[x^2-3x+(3/2)^2-(3/2)^2]
=-3/2[(x-3/2)^2-9/4]
∴S△ABP=-3/2(X-3/2)^2+27/8
∵a=-3/2<0,开口向下
∴当x=3/2时,S=27/8是最大值
∴x=3/2时,y=-x^2+2x+3(该题目第一问可知)=15/4
∴P(3/2,15/4)
相似回答
大家正在搜