应该是证g(x)在R上有一阶连续导数吧?
当x≠0时, g(x)=f(x)/x
∴g'(x) = [xf'(x)-f(x)]/x²
g'(x)在x≠0时连续
x=0时,
g'(0) = lim(x→0) [g(x)-g(0)]/(x-0)
=lim(x→0) [f(x)/x-f'(0)]/x
=lim(x→0) [f(x)-xf'(0)]/x²
=lim(x→0) [f'(x)-f'(0)]/(2x)
=(1/2)f''(0)
又lim(x→0) [xf'(x)-f(x)]/x²
=lim(x→0) [f'(x)+xf''(x)-f'(x)]/(2x)
=(1/2)f''(0)
∴lim(x→0) g'(x) =g'(0)
即g'(x)在x=0处连续
综上可得g'(x)在R上连续,即g(x)在R上有一阶连续导数
追问这个我也觉得很奇怪……题目上写的就是证g'(x)
追答应该是g(x)
因为g'(0)=(1/2)f''(0)
而题设只有f(x)二阶可导,是否三阶可导并不确定
所以g''(0)是否存在不确定
追问嗯嗯~~那是否一定需要用洛必达法则,可以不用吗?
追答因为f(x)是隐函数,所以只能用洛必达法则