医学核磁共振报告中的数值有什么意义?比如T1,T2,还有MRI的数值。数值的高低代表什么?

原理什么的不要。

T1、T2的意义是用来判断是否病变的一个参数,因为病变组织的T1、T2值与正常组织的值不同。

MRI就是核磁共振,数值是它的强度,越大的机器越好越贵。

T1加权像、T2加权像为磁共振检查中报告中常提到的术语。

与核自旋有关,T1是纵向弛豫,T2是横向弛豫。

核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。

扩展资料

基本原理

原子核的自旋

核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可 以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系。

I值为零的原子核可以看做是一种非自旋的球体,I为1/2的原子核可以看做是一种电荷分 布均匀的自旋球体,1H,13C,15N,19F,31P的I均为1/2,它们的原子核皆为电荷分布均匀的自旋 球体。I大于1/2的原子核可以看做是一种电荷分布不均匀的自旋椭球体。

核磁共振现象

原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。

μ=γP

式中,P是角动量矩,γ是磁旋比,它是自旋核的磁矩和角动量矩之间的比值,因此是各种核的特征常数。

当自旋核(spin nuclear)处于磁感应强度为B0的外磁场中时,除自旋外,还会绕B0运动,这种运动情况与陀螺的运动情况十分相像,称为拉莫尔进动(larmor process)。自旋核进动的角速度ω0与外磁场感应强度B0成正比,比例常数即为磁旋比(magnetogyric ratio)γ。式中ν0是进动频率。

ω0=2πν0=γB0

原子核在无外磁场中的运动情况如下图,微观磁矩在外磁场中的取向是量子化的(方向量子化),自旋量子数为I的原子核在外磁场作用下只可能有2I+ l个取向,每一个取向都可以 用一个自旋磁盘子数m来表示,m与I之间的关系是

m=I,I-1,I-2…-I

原子核的每一种取向都代表了核在该磁场中的一种能量状态,I值为1/2的核在外磁场作用下只有两种取向,各相当于m=1/2 和m=-1/2,这两种状态之间的能量差ΔE值为

ΔE=γhB0/2π

一个核要从低能态跃迁到高能态,必须吸收ΔE的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核 吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振。当频率为ν射的射频照射自旋体系时,由于该射频的能量E射=hν射,因此核磁共振要求的条件为

hν射=ΔE(即2πν射=ω射=γB0) ①

目前研究得最多的是1H的核磁共振和13C的核磁共振。1H的核磁共振称为质子磁共振 (Proton Magnetic Resonance),简称 PMR,也表示为1H-NMR。13C核磁共振(Carbon- 13 Nuclear Magnetic Resonance)简称 CMR,也表示为13C-NMR。

核磁共振饱和与驰豫

1H的自旋量子数是I=1/2,所以自旋磁量子数m=±1/2,即氢原子核在外磁场中应有两种取向。1H的两种取向代表了两种不同的能级,在磁场中,m=1/2时,E=-μB0,能量较低,m=-1/2时,E=μB0,能量较高,两者的能量差为ΔE=2μB0。

式①,式②说明:处于低能级的1H核吸收E射的能量时就能跃迁到高能级。也即只有当电磁波的辐射能等于lH的能级差时,才能发生1H的核磁共振。

E射=hν射=ΔE=hν0 ②因此1H发生核磁共振的条件是必须使电磁波的辐射频率等于1H的进动频率,既符合下式。

ν射=ν0=γB0/2π ③由式③可知:要使ν射=ν0,可以采用两种方法。一种是应强度,逐渐改变电磁波的辐射频率ν射,进行扫描,当ν射与B0匹配时,发生核磁共振。

参考资料:百度百科-核磁共振

温馨提示:答案为网友推荐,仅供参考
第1个回答  2012-08-15
MRI就是核磁共振,你说的数值可能是他的强度,越大的机器越好越贵。
MRI名词解释

T1加权像、T2加权像为磁共振检查中报告中常提到的术语,很多非专业人士不明白是什么意思,要想认识何为T1加权像、T2加权像,请先了解几个基本概念:
1、磁共振(mageticresonanceMR);在恒定磁场中的核子,在相应的射频脉冲激发后,其电磁能量的吸收和释放,称为磁共振。
2、TR(repetitiontime):又称重复时间。MRI的信号很弱,为提高MR的信噪比,要求重复使用同一种脉冲序列,这个重复激发的间隔时间即称TR。
3、TE(echedelaytime):又称回波时间,即射频脉冲放射后到采集回波信号之间的时间。
4、序列(sequence):指检查中使用的脉冲程序-组合。常用的有自旋回波(SE),快速自旋回波(FSE),梯度回波(GE),翻转恢复序列IR),平面回波序列(EP)。
5、加权像(weightimage.WI):为了评判被检测组织的各种参数,通过调节重复时间TR。回波时间TE,可以得到突出某种组织特征参数的图像,此图像称为加权像。
6、流空效应(flowingvoid effect):心血管内的血液由于流动迅速,使发射MR信号的氢质子离开接受范围,而测不到MR信号。
7、MR血管成像:有两种血管成像的模式,一是时间飞越法time Offlight即TOF法;二是相位对比法phase contrast即PC法。前者通过血流的质子群与静止组织之间的纵向矢量变化来成像,后者通过相位对比变化而区别周围静止组织,突出重建血管图像。目前以TOP法临床应用较广泛。
8、MR水成像:根据TW2图像,可以抑制其它的组织,只显示静止的水份,这一技术可作脑室成像、胆道成像、尿路成像等。
9、弛豫:在射频脉冲的激发下,人体组织内氢质子吸收能量处于激发状态。射频脉冲终止后,处于激发状态的氢质子恢复其原始状态,这个过程称为弛豫。
了解了以上概念后,描述磁共振成像过程大致如下:
人体组织中的原子核(含基数质子或中子,一般指氢质子)在强磁场中磁化,梯度场给予空间定位后,射频脉冲激励特定进动频率的氢质子产生共振,接受激励的氢质子驰豫过程中释放能量,即磁共振信号,计算机将MR信号收集起来,按强度转换成黑白灰阶,按位置组成二维或三维的形态,最终组成MR图像。
总之,磁共振成像是利用原子核在磁场内共振产生的信号经重建成像的成像技术。

B. T1和T2解释

了解了以上基本概念后我们就可以进一步了解何为 T1加权成像、T2加权成像了。
所谓的加权就是“突出”的意思
T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别
T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。
在任何序列图像上,信号采集时刻横向的磁化矢量越大,MR信号越强。
T1加权像 短TR、短TE——T1加权像,T1像特点:组织的T1越短,恢复越快,信号就越强;组织的T1越长,恢复越慢,信号就越弱。
T2加权像 长TR、长TE——T2加权像, T2像特点:组织的T2越长,恢复越慢,信号就越强;组织的T2越短,恢复越快,信号就越弱。质子密度加权像 长TR、短TE——质子密度加权像,图像特点:组织的 rH 越大,信号就越强; rH 越小,信号就越弱。
T1加权像高信号的产生机制
一般认为,T1加权像上的高信号多由于出血或脂肪组织引起。但近年来的研究表明,T1加权高信号尚可见于多种颅内病变中,包括肿瘤、脑血管病、代谢性疾病以及某些正常的生理状态下。
在射频脉冲的激发下,人体组织内氢质子吸收能量处于激发状态。在弛豫过程中,氢质子将其吸收的能量释放到周围环境中,若质子及所处晶格中的质子也以与Larmor频率相似的频率进动,那么氢质子的能量释放就较快,组织的T1弛豫时间越短,T1加权像其信号强度就越高。T1弛豫时间缩短者有3种情况:其一为结合水效应;其二为顺磁性物质;其三为脂类分子。

C. 区分T1和T2
方法一:1.相对于SE序列的MR片子可以根据TR、TE与加权像的关系来确定 
TR TE
T1WI 短(<500ms) 短(<25ms)
T2WI 长(>2000ms) 长(>75ms)
PdWI 长(>2000ms) 短(<25ms)
2.相对于GRE梯度回波序列(通常TR及TE的参数均很小的即为梯度回波序列)的片子光靠参数就不好确定了,这需要依靠间接征象,比如依靠膀胱、肾盂、输尿管内的尿液及脑脊液等含水量较多部位的信号高低来判断,水是亮的为T2WI,水是暗的为低信号。
3.至于压脂序列你可以通过皮下脂肪或者肾周脂肪信号来判断,如果变黑了说明是压制序列。
希望我的这些技巧能对你有所帮助!!!!
方法2:液体是亮的为T2WI,液体是暗的为T1本回答被提问者和网友采纳
第2个回答  2012-08-30
不需要知道这些值的意义,T1、T2这些都是专业术语,是表示医学权威的,本质就是装13用的,但是不写不行,你只需要看诊断结论就够了。
相似回答