可积与有界的关系是可积不一定有界。可积与有界的关系是积分的一种关系,积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。
积分的一个严格的数学定义由波恩哈德·黎曼给出。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。
比如说,路径积分是多元函数的积分,积分的区间不再是一条线段,而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。
设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
设f(x)在区间[a,b]上有界,且只有有限个第一类间断点,则f(x)在[a,b]上可积。
设f(x)在区间[a,b]上单调有界,则f(x)在[a,b]上可积。
可积函数是存在积分的函数。除非特别指明,一般积分是指勒贝格积分;否则,称函数为黎曼可积等。
给定集合X及其上的σ-代数σ和σ上的一个测度,实值函数f:X→R是可积的如果正部f和负部f都是可测函数并且其勒贝格积分有限。令为f的"正部"和"负部"。如果f可积,则其积分定义为对于实数p≥0,函数f是p-可积的如果|f|是可积的;对于p=1,也称绝对可积。