我的理解是这样的,一般系数的方程是这样的
Ax=0,而增广矩阵的方程为Ax=b,增广矩阵为A|b,A与A|b不等,只有A的秩小于增广的秩,增广的方程就存在0=b,这是不可能的,所以要有解就必须秩相等
这里引用别人的回答
如果系数矩阵的秩R(A)小于增广矩阵的秩R(A,b),
那么方程组就无解
而如果系数矩阵的秩R(A)等于增广矩阵的秩R(A,b)
方程组有解,
R(A)=R(A,b)等于方程组未知数个数n时,有唯一解。
而若R(A)=R(A,b)小于方程组未知数个数n时,有无穷多个解。
温馨提示:答案为网友推荐,仅供参考