未来的7个太空引擎

如题所述


现代火箭发动机能很好地将技术送入轨道,但它们完全不适合长时间的太空旅行。因此,十几年来,科学家们一直在研究创造替代性的太空发动机,可以将飞船加速到创纪录的速度。让我们来看看这个领域的七个关键想法。

1、沙尔发动机(EmDrive)

要移动,你需要从某物上推开--这条规则被认为是物理学和宇航学不可动摇的支柱之一。具体从什么地方开始--从地球、水、空气或者像火箭发动机那样的气体喷射--并不那么重要。

一个著名的思想实验:想象一个宇航员进入外太空,但连接他和飞船的电缆突然断裂,人开始慢慢飞走。他只有一个工具箱。他的行动是什么?正确答案:他需要从飞船上扔掉工具。根据动量守恒定律,人从工具上抛开的力与工具从人身上抛开的力完全相同,所以他将逐渐向飞船移动。正如实验表明的那样,有一定的机会反驳这种不可动摇的说法。

这款发动机的创造者是英国工程师罗杰-沙尔,他在2001年成立了自己的卫星推进研究公司。EmDrive的设计相当奢侈,是一个金属桶的形状,两端密封。在这个桶内有一个磁控管,可以发射电磁波--和传统的微波炉一样。而事实证明,它足以产生一个非常小但相当明显的推力。

作者自己通过电磁辐射在 "水桶 "不同端的压力差来解释他的发动机的运作--在窄的一端比宽的一端要小。这就产生了一个指向窄端的推力。这种发动机运行的可能性曾不止一次受到质疑,但在所有的实验中,沙尔装置都显示出在预定方向上存在推力。

实验:

对沙尔桶进行测试的实验者包括美国航天局、德累斯顿工业大学和中国科学院等组织。该发明在各种条件下进行了测试,包括在真空中,它显示出存在20微微子的推力。

这相对于化学喷气发动机来说,是非常小的。但是,考虑到沙尔发动机可以随心所欲地工作,因为它不需要燃料的供应(太阳能电池可以提供磁控管工作),它有可能将航天器加速到巨大的速度,以光速的百分比来衡量。

为了充分证明发动机的性能,有必要进行更多的测量,并摆脱外部磁场等可能产生的副作用。然而,已经有人对沙尔发动机的异常推力提出了其他可能的解释,一般来说,这违反了通常的物理定律。

例如,有人提出了这样的版本:发动机能够产生推力是因为它与物理真空的相互作用,而在量子水平上,真空的能量是非零的,充满了不断出现和消失的虚拟基本粒子。最终谁会是对的--这个理论的作者、沙尔本人还是其他怀疑论者,我们将在不久的将来找到答案。

2、太阳能帆

如上所述,电磁辐射会产生压力。这意味着在理论上它可以转化为运动----例如,在帆的帮助下。正如过去几个世纪的船只用帆抓住风一样,未来的宇宙飞船也会用帆抓住太阳或任何其他星光。

但问题是,光压极小,而且随着与光源距离的增加而减小。因此,这种帆要想发挥作用,必须非常轻巧,而且体积非常大。而这就增加了当它遇到小行星或其他物体时,整个结构被破坏的风险。

已经有人尝试建造并向太空发射太阳能帆船--1993年,俄罗斯在 "进步号 "飞船上测试了太阳能帆,2010年,日本在前往金星的途中进行了成功的测试。但还没有一艘船使用风帆作为主要的加速来源。另一个项目--电动帆,在这方面看起来更有前途一些。

3、电动帆

太阳不仅发射光子,而且还发射带电的物质粒子:电子、质子和离子。所有这些粒子形成了所谓的太阳风,太阳风每秒从太阳表面带走约100万吨物质。

太阳风的传播范围达数十亿公里,是我们地球上一些自然现象的原因:地磁风暴和北极光。地球受到自身磁场的保护,不受太阳风的影响。

太阳风和空气风一样,相当适合旅行,你只需要让它吹在风帆上。芬兰科学家Pekka Janhunen在2006年创建的电帆项目,从外表上看,与太阳能的电帆没有什么共同之处。这种发动机由几根细长的电缆组成,类似于没有轮辋的轮辐。

由于电子枪逆行方向发射,这些电缆获得了正电势。由于电子的质量约为质子质量的1800倍,所以电子产生的推力不会起到根本性的作用。太阳风的电子对这样的风帆并不重要。但带正电荷的粒子--质子和阿尔法辐射--将被绳索排斥,从而产生喷射推力。

虽然这种推力将比太阳帆的推力小200倍左右,但欧洲航天局对这个项目很感兴趣。事实上,电帆在太空中的设计、制造、部署和操作都要容易得多。此外,利用重力,电帆还可以前往恒星风的源头,而不仅仅是远离它。而且由于这种帆的表面积比太阳帆的表面积小得多,所以更不容易受到小行星和太空碎片的影响。也许在未来几年内,我们会看到第一艘实验船的电帆。

4、离子发动机

带电的物质粒子,即离子的流动,不仅由恒星发出。离子化气体也可以人工制造。正常情况下,气体粒子是电中性的,但当其原子或分子失去电子时,就会变成离子。就其总质量而言,这种气体仍然没有电荷,但其单个粒子却变成了带电粒子,这意味着它们可以在磁场中移动。

在离子引擎中,惰性气体(通常是氙气)被高能电子流电离。它们将电子从原子中击出,并获得正电荷。此外,所产生的离子在静电场中被加速到200公里/秒的速度,这比化学喷气发动机的气体流出速度大50倍。然而,现代离子推进器的推力非常小--大约50-100毫微吨。这样的发动机甚至无法搬离桌面。但他有一个严重的优点。

大的比重可以大大降低发动机的燃料消耗。从太阳能电池获得的能量被用来电离气体,因此离子发动机能够工作很长时间--长达3年不间断。在这样的时间里,他将有时间将航天器加速到化学发动机做梦都想不到的速度。

离子发动机作为各种任务的一部分,反复耕耘着浩瀚的太阳系,但通常是作为辅助,而不是主力。今天,作为离子推进器的一种可能的替代物,他们越来越多地谈论等离子体推进器。

5、等离子体引擎

如果原子的电离程度变得很高(约99%),那么这样的物质聚集状态就称为等离子体。等离子体状态只有在高温下才能达到,因此,电离气体在等离子体发动机中被加热到几百万度。加热是利用外部能源--太阳能电池板或更现实的小型核反应堆来进行的。

然后,热等离子体通过火箭喷嘴喷出,产生比离子推进器大几十倍的推力。等离子体发动机的一个例子是VASIMR项目,该项目自上世纪70年代开始研制。与离子推进器不同,等离子体推进器尚未在太空中进行测试,但被寄予了巨大的希望。正是VASIMR等离子体发动机是载人飞向火星的主要候选者之一。

6 、融合引擎

自二十世纪中叶以来,人们一直在试图驯服热核聚变的能量,但迄今为止,他们还未能做到这一点。然而,受控的热核聚变仍然是非常有吸引力的,因为它是从非常廉价的燃料----氦和氢的同位素----中获得巨大能量的来源。

目前,有几个项目正在设计一种以热核聚变为能源的喷气发动机。其中最有希望的被认为是基于磁等离子体封闭反应器的模型。这种发动机中的热核反应器将是一个长100-300米、直径1-3米的无压圆柱形式。舱内应以高温等离子体的形式提供燃料,在足够的压力下,进入核聚变反应。位于试验室周围的磁力系统线圈应防止这种等离子体与设备接触。

热核反应区位于这种圆筒的轴线上。在磁场的帮助下,极热的等离子体流经反应堆喷嘴,产生巨大的推力,比化学发动机的推力大很多倍。

7、反物质引擎

我们周围的所有物质都是由费米子组成的--具有半整数自旋的基本粒子。例如,在原子核中构成质子和中子的夸克,以及电子。此外,每个费米子都有自己的反粒子。对于电子来说,这是一个正电子,对于夸克来说,这是一个反夸克。

反粒子与平常的 "同志 "质量相同,自旋相同,不同的是其他所有量子参数的符号。理论上,反粒子能够构成反物质,但到目前为止,宇宙中还没有任何地方登记过反物质。对于基础科学来说,最大的问题是为什么它不存在。

但在实验室条件下,你可以得到一些反物质。例如,最近有人做了一个实验,比较了储存在磁阱中的质子和反质子的特性。

当反物质和普通物质相遇时,会发生一个相互湮灭的过程,伴随着巨大能量的爆发。所以,如果拿一公斤的物质和反物质来说,它们相遇时释放的能量就相当于人类 历史 上威力最大的氢弹--"沙皇弹 "的爆炸。

而且,相当一部分能量将以电磁辐射的光子形式释放。据此,人们希望通过制造一个类似于太阳帆的光子引擎,将这种能量用于太空旅行,只是在这种情况下,光将由内部源产生。

但为了有效地利用喷气发动机的辐射,就必须解决创造一个能够反射这些光子的 "镜子 "的问题。毕竟,飞船必须以某种方式推开才能产生推力。

任何现代材料根本无法承受这种爆炸时生的辐射,会瞬间蒸发。斯特鲁加茨基兄弟在他们的科幻小说中,通过制造一种 "绝对反射器 "解决了这个问题。在现实生活中,还没有人做到这样。这项任务和制造大量反物质及其长期储存的问题一样,是未来物理学的问题。

温馨提示:答案为网友推荐,仅供参考
相似回答