正定矩阵的特征及性质

如题所述

矩阵正定性的性质:

1、正定矩阵的特征值都是正数。

2、正定矩阵的主元也都是正数。

3、正定矩阵的所有子行列式都是正数。

4、正定矩阵将方阵特征值,主元,行列式融为一体。

正定矩阵的特征方法:

1、 对称矩阵A正定的充分必要条件是A的n个特征值全是正数。

2、对称矩阵A正定的充分必要条件是A合同于单位矩阵E。

3、对称矩阵A正定(半正定)的充分必要条件是存在n阶可逆矩阵U使A=U^TU 

4、对称矩阵A正定,则A的主对角线元素均为正数。

5、对称矩阵A正定的充分必要条件是:A的n个顺序主子式全大于零。

扩展资料:

一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z。

对于n阶实对称矩阵A,下列条件是等价的:

(1)A是正定矩阵;

(2)A的一切顺序主子式均为正;

(3)A的一切主子式均为正;

(4)A的特征值均为正;

(5)存在实可逆矩阵C,使A=C′C;

(6)存在秩为n的m×n实矩阵B,使A=B′B;

(7)存在主对角线元素全为正的实三角矩阵R,使A=R′R。

对于具体的实对称矩阵,常用矩阵的各阶顺序主子式是否大于零来判断其正定性;对于抽象的矩阵,由给定矩阵的正定性,利用标准型,特征值及充分必要条件来证相关矩阵的正定性。

参考资料来源:百度百科--正定矩阵

温馨提示:答案为网友推荐,仅供参考
第1个回答  2016-05-11

正定矩阵在合同变换下可化为标准型, 即对角矩阵。
所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。
判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。
判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。
判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。
正定矩阵的性质:
1.正定矩阵一定是非奇异的。奇异矩阵的定义:若n阶矩阵A为奇异阵,则其的行列式为零,即 |A|=0。
2.正定矩阵的任一主子矩阵也是正定矩阵。
3.若A为n阶对称正定矩阵,则存在唯一的主对角线元素都是正数的下三角阵L,使得A=L*L′,此分解式称为 正定矩阵的乔列斯基(Cholesky)分解。
4.若A为n阶正定矩阵,则A为n阶可逆矩阵。

第2个回答  2020-10-21
相似回答