第1个回答 2019-11-01
1. 弄清题意
2.根据题意,画出图形。
3. 根据题意与图形,用数学的语言与符号写出已知和求证。
4. 分析已知、求证与图形,探索证明的思路。
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,即从不同角度,不同方向思考问题,探索解题方法,从而拓宽解题思路。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析。
5.根据证明的思路,用数学的语言与符号写出证明的过程。
6. 检查证明的过程,看看是否合理、正确 。
第2个回答 2017-01-06
你这话问得本身说明你对证明题有很大的误区,就初等数学而言,证明题大致可分几何证明,代数证明。亦可分为概念型证明(对这个能理清的,大凡都不简单,不过现行的教材都浅尝辄止,很少遇见!),推导型证明。几何证明很多看起来那简直非人所想,所以很难说有基本的思路和步骤,尤其那神奇的辅助线!这也是几何原本的魅力。但要做到基本,还是回归到基础概念,什么中位线,平行线,三角形四心等。我只能说这要看你的积累了,别无他法。当然解析几何和向量的出现在一定程度上简化了这种思维过程,不过计算又复杂了!此事古难全!有时还会是两者的结合!代数证明有时显得很单纯,主要可从综合法和分析法(反推),反证法考虑,特殊点数学归纳法,对1,0两个数的妙用。平方数的妙用。当然因数分解,那更要熟练掌握(令人遗憾的是现在改得太简单了!)等。说句废话就是因题而异。 接下来主要讲下推导,说白了就是利用你所学的去证明另外一个命题,这对于大多数人显得极其重要,这就要求你要对概念弄得彻底,和对题的积累,再加上上述的一些方法的训练!做好了应试足矣!但是创新则显得尤为不足!因而如果你想对数学理解的更深入,则要从概念的源处出发,看相关大家写的论文和著作,并试着加以运用达到为自己所用,以求更大的创造。本回答被网友采纳
第3个回答 2019-10-10
校园那点事:数学证明题无非两种,一种是“卧槽这还用证明”,另一种是“卧槽这也能证明”。