有关偏导数的简单证明

如题所述

证明:
根据连续定义:
lim(x,y→0) f(x,y)
=lim(x,y→0) xysin[1/√(x²+y²)]

-xy≤xysin[1/√(x²+y²)]≤xy
lim(x,y→0) -xy=lim(x,y→0) xy=0
根据夹逼准则:
lim(x,y→0) f(x,y)
=lim(x,y→0) xysin[1/√(x²+y²)]
=0=f(0,0)
∴f(x,y)在(0,0)连续!
f'x(0,0)
=lim(Δx→0) [f(Δx,0)-f(0,0)]/Δx
=lim(Δx→0) (0-0)/Δx
=0
同理:f'y(0,0)=0
f'x(x,y)
=ysin[1/√(x²+y²)] -[x²y/(x²+y²)^(-3/2)]cos[1/√(x²+y²)]
显然,上式在(0,0)没有定义,因此不连续
同理,
f'y(x,y)=xsin[1/√(x²+y²)] -[xy²/(x²+y²)^(-3/2)]cos[1/√(x²+y²)]
在(0,0)也不连续!

令:ρ=√(Δx²+Δy²)
lim(ρ→0) Δf(x,y)/ρ
=lim(ρ→0) [f(Δx+0,Δy+0)-f(0,0)]/ρ
=lim(ρ→0) [f'x(0,0)dx+f'y(0,0)dy+o(ρ)]/ρ
=lim(ρ→0) f(Δx+0,Δy+0)/ρ
=lim(ρ→0) f(Δx,Δy)/ρ
=lim(ρ→0) ΔxΔysin[1/√(Δx²+Δy²)] / √(Δx²+Δy²)
又∵
-ΔxΔy / √(Δx²+Δy²) ≤ ΔxΔysin[1/√(Δx²+Δy²)] / √(Δx²+Δy²) ≤ ΔxΔy / √(Δx²+Δy²)
事实上lim(ρ→0)ΔxΔy / √(Δx²+Δy²)中:
有:
|ΔxΔy / √(Δx²+Δy²)|≤ (Δx²+Δy²) /2 √(Δx²+Δy²) = (1/2)√(Δx²+Δy²)
lim(ρ→0) (1/2)√(Δx²+Δy²) =0
由夹逼准则:
lim(ρ→0)ΔxΔy / √(Δx²+Δy²) =0
再由夹逼准则:
lim(ρ→0) ΔxΔysin[1/√(Δx²+Δy²)] / √(Δx²+Δy²) =0
∴f(x,y)在(0,0)处可微!
df(x,y)|(0,0) =0
温馨提示:答案为网友推荐,仅供参考
第1个回答  2017-03-23
Add the dark chocolate milk