齐次线性方程组有非零解的充分条件是什么?

如题所述

只有零解时,R(A)=n

特别当A是方阵时 |A|≠0。

有非零解时,R(A)<n

特别当A是方阵时 |A|=0。

如果m<n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解,否则为全零解。

对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。

扩展资料

齐次线性方程组的性质

1.齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。

2.齐次线性方程组的解的k倍仍然是齐次线性方程组的解。

3.齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。

齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。

4. n元齐次线性方程组有非零解的充要条件是其系数行列式为零。等价地,方程组有唯一的零解的充要条件是系数矩阵不为零。

参考资料来源:百度百科-齐次线性方程组

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜