圆锥曲线的所有定理 高中以上

如题所述

圆锥曲线
圆锥曲线包括椭圆,双曲线,抛物线
1.
椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P|
|PF1|+|PF2|=2a,
(2a>|F1F2|)}。
2.
双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a,
(2a<|F1F2|)}。
3.
抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。
4.
圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。
·圆锥曲线的参数方程和直角坐标方程:
1)直线
参数方程:x=X+tcosθ
y=Y+tsinθ
(t为参数)
直角坐标:y=ax+b
2)圆
参数方程:x=X+rcosθ
y=Y+rsinθ
(θ为参数
)
直角坐标:x^2+y^2=r^2
(r
为半径)
3)椭圆
参数方程:x=X+acosθ
y=Y+bsinθ
(θ为参数
)
直角坐标(中心为原点):x^2/a^2
+
y^2/b^2
=
1
4)双曲线
参数方程:x=X+asecθ
y=Y+btanθ
(θ为参数
)
直角坐标(中心为原点):x^2/a^2
-
y^2/b^2
=
1
(开口方向为x轴)
y^2/a^2
-
x^2/b^2
=
1
(开口方向为y轴)
5)抛物线
参数方程:x=2pt^2
y=2pt
(t为参数)
直角坐标:y=ax^2+bx+c
(开口方向为y轴,
a<>0

x=ay^2+by+c
(开口方向为x轴,
a<>0
)
圆锥曲线(二次非圆曲线)的统一极坐标方程为
ρ=ep/(1-e·cosθ)
其中e表示离心率,p为焦点到准线的距离。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-03-09
1.
椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{p|
|pf1|+|pf2|=2a,
(2a>|f1f2|)}。
  2.
双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{p|||pf1|-|pf2||=2a,
(2a<|f1f2|)}。
  3.
抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。
性质:1)椭圆
  参数方程:x=acosθ
y=bsinθ
(θ为参数
)
  直角坐标(中心为原点):x^2/a^2
+
y^2/b^2
=
1
  2)双曲线
  参数方程:x=asecθ
y=btanθ
(θ为参数
)
  直角坐标(中心为原点):x^2/a^2
-
y^2/b^2
=
1
(开口方向为x轴)
y^2/a^2
-
x^2/b^2
=
1
(开口方向为y轴)
  3)抛物线
  参数方程:x=2pt^2
y=2pt
(t为参数)
  直角坐标:y=ax^2+bx+c
(开口方向为y轴,
a<>0

x=ay^2+by+c
(开口方向为x轴,
a<>0
)
  圆锥曲线(二次非圆曲线)的统一极坐标方程为
  ρ=ep/(1-e×cosθ)
  其中e表示离心率,p为焦点到准线的距离。
  焦点到最近的准线的距离等于ex±a
  圆锥曲线的焦半径(焦点在x轴上,f1
f2为左右焦点,p(x,y),长半轴长为a)
  椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。
  |pf1|=a+ex
|pf2|=a-ex
  双曲线:
  p在左支,|pf1|=-a-ex
|pf2|=a-ex
  p在右支,|pf1|=a+ex
|pf2|=-a+ex
  p在下支,|pf1|=
-a-ey
|pf2|=a-ey
  p在上支,|pf1|=
a+ey
|pf2|=-a+ey
  圆锥曲线的切线方程:圆锥曲线上一点p(x0,y0)的切线方程以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y^2
  即椭圆:x0x/a^2+y0y/b^2=1;双曲线:x0x/a^2-y0y/b^2=1;抛物线:y0y=p(x0+x)
  圆锥曲线中求点的轨迹方程
  在求曲线的轨迹方程时,如果能够将题设条件转化为具有某种动感的直观图形,通过观察图形的变化过程,发现其内在联系,找出哪些是变化的量(或关系)、哪些是始终保持不变的量(或关系),那么我们就可以从找出的不变量(或关系)出发,打开解题思路,确定解题方法。
相似回答
大家正在搜