工业顺序控制——工业自动加热反应炉的控制(单片机编程)

如题所述

(一)温度控制系统的组成 温度是工业对象中主要的被控参数之一,象冶金、机械、食品、化工各类工业中,广泛使用的各种加热炉、热处理炉、反应炉等,对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。 电阻炉炉温控制系统的控制过程是:单片机定时对炉温进行检测,经A/D转换芯片得到相应的数字量,经过计算机进行数据转换,得到应有的控制量,去控制加热功率,从而实现对温度的控制。 进行系统设计时应考虑如下问题: 炉温变化规律的控制,即炉温按预定的温度——时间关系变化,这主要在控制程序设计中考虑。 温度控制范围:如400~1000℃,这就涉及到测温元件、电炉功率的选择等。 控制精度、超调量等指标,这涉及到A/D转换精度、控制规律选择等。 (二)硬件电路设计 1.温度检测元件及变送器、ADC的选择 温度检测元件及变送器的选择要考虑温度控制范围及精度要求。对于0~1000℃ 的测量范围,采用热电偶,如镍铬热电偶,分度号为EU,其输出信号为0~41.32mV,经毫伏变送器,输出0~10mA,然后再经过电流——电压变换电路转换为0~5V电压信号。为了提高测量精度,可将变送器进行零点迁移,例如温度测量范围改为400~1000℃,热电偶给出16.4~41.32mV 时,使变送器输出0~10mV,这样使用8位A/D转换器,能使量化误差达到±2.34℃。 2.接口芯片的扩展 由于本系统既要显示、报警、键盘输入,又要进行控制,所以系统在8031系统中扩展了一片8155,它有三个8位I/O口,256字节的RAM,可以作为外部数据存储器供系统使用,8031的P2.1接8155的CE,P2.0接8155的IO/M,当P2.1=0,P2.0=1时,选中8155片内的三个I/O端口,其口地址如下: 0100H 〖〗命令状态寄存器0101H〖〗A口0102H〖〗B口0103H〖〗C口或控制口寄存器0104H〖〗计数值低八位0105H〖〗计数值高八位和方式寄存器当P2.2=0时,选中ADC0809(允许启动各通道转换与读取相应的转换结果)。转换结束信号EOC经倒相后接至单片机的外部中断INT1 (P3.3),当P3.3=0时,说明转换结束。我们选用0通道作为输入,把0809视为一个地址为03F8H的外部数据存储单元,对其写数据时, 8031的WR信号使ALE和START有效,将74LS373锁存的地址低三位存入0809,并启动ADC0809,D 9EOC为低电平时,A/D转换正在进行,当EOC为高电平时,表示转换结束,8031可以读如转换好的数据。 3.温度控制电路 温度控制电路采用晶闸管调功方式。双向晶闸管串在50Hz交流电源和加热丝电路中,只要在给定周期里改变晶闸管开关的接通时间的脉冲信号即可。这可以用一条I/O线,通过程序输出控制脉冲。 为了达到过零触发的目的,需要交流电过零检测电路。此电路输出对应于50Hz交流电压过零时刻的脉冲,作为触发双向晶闸管的同步脉冲,使晶闸管,在交流电压过零时刻导通。 电压比较器LM311 将50HZ正弦交流电压变成方波。方波上升沿和下降沿分别作为单稳态触发器的触发信号,单稳触发器输出的窄脉冲经二极管或门混合,就得到对应于220V市电过零时刻的同步脉冲。此脉冲一路作为触发同步脉冲加到温控电路,一路作为计数脉冲加到单片机8031的P3.4和P3.5输入端。 (三)控制规律的选择和程序设计 电阻炉炉温控制是这样一个反馈调节过程,比较实际炉温和需要炉温得到偏差,通过对偏差的处理获得控制信号,去调节电阻炉的热功率,从而实现对炉温的控制。 按照偏差的比例、积分和微分产生控制作用(PID控制),是过程控制中应用最广泛的一种控制形式。 计算机PID是用差分方程近似实现的。 PID调节规律的微分方程(略)。 系统控制程序采用两重中断嵌套方式设计。首先使T0 计数器产生定时中断,作为本系统的采样周期。在中断服务程序中启动A/D,读入采样数据,进行数字滤波、上下限报警处理,PID计算,然后输出控制脉冲信号。脉冲宽度由T1计数器溢出中断决定。在等待T1中断时,将本次采样值转换成对应的温度值放入显示缓冲区,然后调用显示子程序。从T1中断返回后,再从 T0中断返回主程序并且、继续显示本次采样温度,等待下次T0中断。
温馨提示:答案为网友推荐,仅供参考
相似回答