费尔马定理?

如题所述

费马大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费玛提出。

他断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。

德国佛尔夫斯克曾宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。

被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯彻底证明。

扩展资料:

费尔马定理的探索路程:

1637年,费马在书本空白处提出费马猜想。

1770年,欧拉证明n=3时定理成立

1823年,勒让德证明n=5时定理成立。

1832年,狄利克雷试图证明n=7失败,但证明 n=14时定理成立。

1839年,拉梅证明n=7时定理成立。

1850年,库默尔证明2<n<100时除37、59、67三数外定理成立。

1955年,范迪维尔以电脑计算证明了 2<n<4002时定理成立。

1976年,瓦格斯塔夫以电脑计算证明 2<n<125000时定理成立。

1985年,罗瑟以电脑计算证明2<n<41000000时定理成立。

1987年,格朗维尔以电脑计算证明了 2<n<10时定理成立。

1995年,怀尔斯证明 n>2时定理成立。

参考资料来源:百度百科-费马大定理

温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2017-11-25
17世纪的一位法国数学家,提出了一个数学难题,使得后来的数学家一筹莫展,这个人就是费马(1601——1665)。

这道题是这样的:当n>2时,x^n+y^n=z^n没有正整数解。在数学上这称为“费马大定理”。为了获得它的一个肯定的或者否定的证明,历史上几次悬赏征求答案,一代又一代最优秀的数学家都曾研究过,即使用现代的电子计算机也只能证明:当n小于等于4100万时,费马大定理是正确的。由于当时费马声称他已解决了这个问题,但是他没有公布结果,于是留下了这个数学难题中少有的千古之谜。

17世纪伊始,就预示了一个颇为壮观的数学前景。而事实上,这个世纪也正是数学史上一个辉煌的时代。几何学首先成了这一时代最引入注目的引玉之明珠,由于几何学的新方法—代数方法在几何学上的应用,直接导致了解析几何的诞生;射影几何作为一种崭新的方法开辟了新的领域;由古代的求积问题导致的极微分割方法引入几何学,使几何学产生了新的研究方向,并最终促进了微积分的发明。几何学的重新崛起是与一代勤于思考、富于创造的数学家是分不开的,费马就是其中的一位。

对解析几何的贡献

费马独立于笛卡儿发现了解析几何的基本原理。

1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。他用代数方法对阿波罗尼奥斯关于轨迹的一些失传的证明作了补充,对古希腊几何学,尤其是阿波罗尼奥斯圆锥曲线论进行了总结和整理,对曲线作了一般研究。并于1630年用拉丁文撰写了仅有八页的论文《平面与立体轨迹引论》。

费马于1636年与当时的大数学家梅森、罗贝瓦尔开始通信,对自己的数学工作略有言及。但是《平面与立体轨迹引论》的出版是在费马去世14年以后的事,因而1679年以前,很少有人了解到费马的工作,而现在看来,费马的工作却是开创性的。

《平面与立体轨迹引论》》中道出了费马的发现。他指出:“两个未知量决定的—个方程式,对应着一条轨迹,可以描绘出一条直线或曲线。”费马的发现比笛卡尔发现解析几何的基本原理还早七年。费马在书中还对一般直线和圆的方程、以及关于双曲线、椭圆、抛物线进行了讨论。

笛卡儿是从一个轨迹来寻找它的方程的,而费马则是从方程出发来研究轨迹的,这正是解析几何基本原则的两个相反的方面。

在1643年的一封信里,费马也谈到了他的解析几何思想。他谈到了柱面、椭圆抛物面、双叶双曲面和椭球面,指出:含有三个未知量的方程表示一个曲面,并对此做了进一步地研究。

对微积分的贡献

16、17世纪,微积分是继解析几何之后的最璀璨的明珠。人所共知,牛顿和莱布尼茨是微积分的缔造者,并且在其之前,至少有数十位科学家为微积分的发明做了奠基性的工作。但在诸多先驱者当中,费马仍然值得一提,主要原因是他为微积分概念的引出提供了与现代形式最接近的启示,以致于在微积分领域,在牛顿和莱布尼茨之后再加上费马作为创立者,也会得到数学界的认可。

曲线的切线问题和函数的极大、极小值问题是微积分的起源之一。这项工作较为古老,最早可追溯到古希腊时期。阿基米德为求出一条曲线所包任意图形的面积,曾借助于穷竭法。由于穷竭法繁琐笨拙,后来渐渐被人遗忘、直到16世纪才又被重视。由于开普勒在探索行星运动规律时,遇到了如何确定椭圆形面积和椭圆弧长的问题,无穷大和无穷小的概念被引入并代替了繁琐的穷竭法。尽管这种方法并不完善,但却为自卡瓦列里到费马以来的数学家开辟厂一个十分广阔的思考空间。

费马建立了求切线、求极大值和极小值以及定积分方法,对微积分做出了重大贡献。

对概率论的贡献

早在古希腊时期,偶然性与必然性及其关系问题便引起了众多哲学家的兴趣与争论,但是对其有数学的描述和处理却是15世纪以后的事。l6世纪早期,意大利出现了卡尔达诺等数学家研究骰子中的博弈机会,在博弈的点中探求赌金的划分问题。到了17世纪,法国的帕斯卡和费马研究了意大利的帕乔里的著作《摘要》,建立了通信联系,从而建立了概率学的基础。

费马考虑到四次赌博可能的结局有2×2×2×2=16种,除了一种结局即四次赌博都让对手赢以外,其余情况都是第一个赌徒获胜。费马此时还没有使用概率一词,但他却得出了使第一个赌徒赢得概率是15/16,即有利情形数与所有可能情形数的比。这个条件在组合问题中一般均能满足,例如纸牌游戏,掷银子和从罐子里模球。其实,这项研究为概率的数学模型一概率空间的抽象奠定了博弈基础,尽管这种总结是到了1933年才由柯尔莫戈罗夫作出的。

费马和帕斯卡在相互通信以及著作中建立了概率论的基本原则——数学期望的概念。这是从点的数学问题开始的:在一个被假定有同等技巧的博弈者之间,在一个中断的博弈中,如何确定赌金的划分,已知两个博弈者在中断时的得分及在博弈中获胜所需要的分数。费马这样做出了讨论:一个博弈者A需要4分获胜,博弈者B需要3分获胜的情况,这是费马对此种特殊情况的解。因为显然最多四次就能决定胜负。

一般概率空间的概念,是人们对于概念的直观想法的彻底公理化。从纯数学观点看,有限概率空间似乎显得平淡无奇。但一旦引入了随机变量和数学期望时,它们就成为神奇的世界了。费马的贡献便在于此。

对数论的贡献

17世纪初,欧洲流传着公元三世纪古希腊数学家丢番图所写的《算术》一书。l621年费马在巴黎买到此书,他利用业余时间对书中的不定方程进行了深入研究。费马将不定方程的研究限制在整数范围内,从而开始了数论这门数学分支。

费马在数论领域中的成果是巨大的,其中主要有:

(1)全部素数可分为4n+1和4n+3两种形式。
(2)形如4n+1的素数能够,而且只能够以一种方式表为两个平方数之和。
(3)没有一个形如4n+3的素数,能表示为两个平方数之和。
(4)形如4n+1的素数能够且只能够作为一个直角边为整数的直角三角形的斜边;4n+1的平方是且只能是两个这种直角三角形的斜边;类似地,4n+1的m次方是且只能是m个这种直角三角形的斜边。
(5)边长为有理数的直角三角形的面积不可能是一个平方数。
(6)4n+1形的素数与它的平方都只能以一种方式表达为两个平方数之和;它的3次和4次方都只能以两种表达为两个平方数之和;5次和6次方都只能以3种方式表达为两个平方数之和,以此类推,直至无穷。

对光学的贡献

费马在光学中突出的贡献是提出最小作用原理,也叫最短时间作用原理。这个原理的提出源远流长。早在古希腊时期,欧几里得就提出了光的直线传播定律相反射定律。后由海伦揭示了这两个定律的理论实质——光线取最短路径。经过若干年后,这个定律逐渐被扩展成自然法则,并进而成为一种哲学观念。—个更为一般的“大自然以最短捷的可能途径行动”的结论最终得出来,并影响了费马。费马的高明之处则在于变这种的哲学的观念为科学理论。

费马同时讨论了光在逐点变化的介质中行径时,其路径取极小的曲线的情形。并用最小作用原理解释了一些问题。这给许多数学家以很大的鼓舞。尤其是欧拉,竞用变分法技巧把这个原理用于求函数的极值。这直接导致了拉格朗日的成就,给出了最小作用原理的具体形式:对一个质点而言,其质量、速度和两个固定点之间的距离的乘积之积分是一个极大值和极小值;即对该质点所取的实际路径来说,必须是极大或极小本回答被网友采纳
第2个回答  2019-10-18
当整数n
>
2时,关于x,
y,
z的不定方程
x^n
+
y^n
=
z^n.
的整数解都是平凡解,即
当n是偶数时:(0,±m,±m)或(±m,0,±m)
(补充:(0,0,0)是其中一个特殊解2008年由赵浩杰提出)
当n是奇数时:(0,m,m)或(m,0,m)或(m,-m,0)
这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯(Andrew
Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。
第3个回答  2019-09-15
近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。
300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。
费尔马大定理的由来
故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。
1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程
x2+
y2
=z2
的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。”
费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n
+y^n
=z^n
的方程,当n大于2时没有正整数解。
费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。
他酷爱数学,把自己所有的业余时间都用于研究数学和物理。由于他思维敏捷,记忆力强,又具备研究数学所必须的顽强精神,所以,获得了丰硕的成果,使他跻身于17世纪大数学家之列
相似回答