解析函数与调和函数有什么关系???

如题所述

解析函数
analytic function
区域上处处可微分的复函数。17世纪,L.欧拉和J.leR.达朗贝尔在研究水力学时已发现平面不可压缩流体的无旋场的势函数Φ(x,y)与流函数Ψ(x,y)有连续的偏导数,且满足微分方程组,并指出f(z)=Φ(x,y)+iΨ(x,y)是可微函数,这一命题的逆命题也成立。柯西把区域上处处可微的复函数称为单演函数,后人又把它们称为全纯函数、解析函数。B.黎曼从这一定义出发对复函数的微分作了深入的研究,后来,就把上述的偏微分方程组称为柯西-黎曼方程,或柯西-黎曼条件。K. 魏尔斯特拉斯将一个在圆盘上收敛的幂级数的和函数称为解析函数,而区域上的解析函数是指在区域内每一小圆邻域上都能表成幂级数的和的函数。关于解析函数的不同定义在20世纪初被证明是等价的。基于魏尔斯特拉斯的定义,区域上的解析函数可以看作是其内任一小圆邻域上幂级数的解析开拓 ,关于解析开拓的一般定义是,f(z)与g(z)分别是D与D*上的解析函数,若DÉD* ,且在D*上f(z)=g(z)。则称f(z)是g(z)由D*到D的解析开拓 。解析开拓的概念可以推广到这样的情形 :f(z)与g(z)分别是两个圆盘D1与D2上的幂级数,且D1∩D2≠ ,在D1∩D2上f(z)=g(z )则也称f与g互为解析开拓,把可以互为解析开拓的( f(z),Δ)的解析圆盘Δ全连起来,作成一个链。它们的并记作Ω,得到了Ω上的一个解析函数,称它为魏尔斯特拉斯的完全解析函数,这里可能出现这样的情形,在连成一个链的圆盘中,有一些圆盘重叠在一起,但在这些重叠圆盘的每一个上的解析函数都是不一样的,它们的每一个都称为完全解析函数的分支。这样的完全解析函数实际是一个多值函数。黎曼提出将多值解析函数中的那些重叠的圆盘看作是不同的“叶”,不使他们在求并的过程中只留下一个代表,于是形成了一种称为黎曼面的几何模型。将多值函数看作是定义于其黎曼曲面上的解析函数,这样多值解析函数变成了单值解析函数。

调和函数
如果二元函数f(x,y)在区域Ω内有二阶连续偏导数且满足拉普拉斯方程,则称f为区域Ω中的调和函数.
广义来讲
在某区域中满足拉普拉斯方程的函数。通常对函数本身还附加一些光滑性条件,例如有连续的一阶和二阶偏导数。当自变量为n个(从而区域是n维的)时,则称它为n维调和函数。例如,n=2时,调和函数u(x,y)在某平面区域内满足方程
若所考虑的区域包含一个闭圆域,例如x+y≤R,则有下列关于调和函数的平均值公式:
即u(x,y)在圆心的值等于圆周上的积分平均值。
更一般地,圆内任何一点x=rcosφ,y=rsinφ(0≤r<R)处调和函数 u=u(r, φ)的值可以由下列泊松公式给出:
形如上式右端的积分称作泊松积分。
设u(x,y)为平面区域G中的调和函数,且在G的闭包上连续,则借助于平均值公式可以证明,它不能在G 的内部取其最大值与最小值,除非它恒等于一常数。这就是调和函数的最大、最小值原理。
由泊松积分出发可解决下列狄利克雷问题:在区域G的边界嬠G上给定一连续函数 ƒ(x,y),要求给出G中的调和函数u(x,y),使其在嬠G上取ƒ(x,y)的值,即
在G的边界嬠G满足一定的条件下,这个问题的解存在且惟一。
对于高维的调和函数,也有与上述类似的最大、最小值原理,平均值公式以及相应的狄利克雷问题解的存在和惟一性定理。
二维调和函数与解析函数论有着密切联系。在某区域内的调和函数一定是该区域内某解析函数(可能多值)的实部或虚部;反之,某区域内的解析函数其实部与虚部都是该区域内的调和函数,并称其虚部为实部的共轭调和函数。用复数z=x+iy的记法,将u(x,y)写成u(z),若u(z)在│z│<R内调和,在│z│≤R上连续,则泊松公式就成为
(0≤r<R)。
对于任何α,│α│<R,此式还可写成
泊松积分是近代复变函数论中一个重要的研究工具,由此出发,可得出函数论中一系列重要结果。
若u(x,y)满足“重调和”方程
则称u是重调和函数,它是数学物理方程理论中的一个重要函数类。调和函数和重调和函数,在力学和物理学中都有重要的应用。类似地也有高维的重调和函数。
由于拉普拉斯方程是椭圆型方程的一个特殊情况,故后者的解的一般性质也是调和函数的性质。
温馨提示:答案为网友推荐,仅供参考