急求!!高二数学:设函数f(x)=e+ln(x+1)-ax。(2)当x≥0时,f(x)≥cosx恒成立

设函数f(x)=
+ln(x+1)-ax。(2)当x≥0时,f(x)≥cosx恒成立,求实数a的取值范围
急求,谢谢各位大侠

f(x)=e^x+ln(x+1)-ax 定义域x≥0
令g(x)=f(x)-cosx=e^x+ln(x+1)-ax-cosx
g'(x)=e^x+1/(x+1)-a+sinx
g''(x)=e^x-1/(x+1)²+cos(x)
令h(x)=e^x-1/(x+1)²
h'(x)=e^x+2/(x+1)³>0
∴h(x)单调递增 h(x)≥h(0)=0
0≤x≤π/2 cosx≥0 g''(x)>0
x>π/2 h(x)>e^π/2-1/(π/2+1)²>1>cosx→g''(x)>0
∴g'(x)单调递增 g'(x)≥g(0)=2-a
∴当a≤2时,g'(x)≥0 g(x)单调递增
g(x)≥g(0)=1-1=0,不等式恒成立
∴a≤2
温馨提示:答案为网友推荐,仅供参考
相似回答