平面直角坐标系xoy中,直线L与抛物线y^2=4x交于不同的A、B两点 如果:向量OA乘向量OB=-4,证明直线L必过一

平面直角坐标系xoy中,直线L与抛物线y^2=4x交于不同的A、B两点
如果:向量OA乘向量OB=-4,证明直线L必过一定点,并求出该点的坐标

解答:
设A(x1,y1),B(x2,y2)
直线L的斜率不为0
则设直线为x=my+t
(注意,此种设法可以避免分类讨论,即讨论直线的斜率是否存在。)
与抛物线方程y^2=4x联立,
即将直线代入抛物线方程。
则 y²=4(my+t)
∴ y²-4my-4t=0
利用韦达定理
则 y1+y2=4m, y1*y2=-4t
∴ x1*x2=(4x1*4x2)/16=(y1²*y2²)/16=t²
∵ 向量OA乘向量OB=-4
∴ x1x2+y1y2=-4
∴ t²-4t=-4
∴ t²-4t+4=0
∴ (t-2)²=0
∴ t=2
即直线方程为x=my+2
∴ 直线L恒过一个定点,这个定点的坐标是(2,0)追问

确定吗?明天对过答案后再说

追答

确定啊。你看看答案吧,有问题继续追问。

追问

再问一下,能用参数方程解答一下吗?我提高悬赏了

追答

用参数方程倒是简单,感谢提醒。
设A(t1²,2t1),B(t2²,2t2)
则t1²*t2²+4t1t2=-4
∴ (t1t2+2)²=0
∴ t1t2=-2
k(AB)=2(t1-t2)/(t1²-t2²)=2/(t1+t2)
∴ AB方程 y-2t2=[2/(t1+t2)]*(x-t2²)
∴ y=[2/(t1+t2)]x+2t1t2/(t1+t2)
∴ y=[2/(t1+t2)]x-4/(t1+t2)
∴ x=2时,y=0
∴ 直线恒过点(2,0)

追问

非常感谢!!!好几天没来了,差点忘记采纳了O(∩_∩)O谢谢,我会给你补偿的

温馨提示:答案为网友推荐,仅供参考
第1个回答  2013-01-31
令直线L: y=kx+b,带入抛物线方程(kx+b)^2=4x,整理得x^2-((4-2kb)/k^2)x+b^2/k^2=0;
根据根与系数的关系,x1*x2=b^2/k^2,x1+x2=(4-2kb)/k^2;y1*y2=(kx1+b)(kx2+b)=k^2x1*x2+kb(x1+x2)+b^2=b^2+(4-2kb)*kb/k^2+b^2=4kb/K^2;所以x1x2+y1y2=(b^2+4kb)/k^2=-4;整理的(2k+b)2=0;即2k+b=0;b=-2k;所以L:y=k(x-2),这条直线过点(2,0)追问

http://zhidao.baidu.com/question/509710857.html

谢谢额,你复制的这个我看过了