细化晶粒的方法有哪些

细化晶粒的方法有哪些

方法: 

(1)在液态金属结晶时,提高冷却速度,增大过冷度,来促进自发形核。晶核数量愈多,则晶粒愈细。 

(2)在金属结晶时,有目的地在液态金属中加入某些杂质,做为外来晶核,进行非自发形核,以达到细化晶粒的目的,此方法称为变质处理。这种方法在工业生产中得到了广泛的应用。如铸铁中加入硅、钙等。 

(3)在结晶过程中,采用机械振动、超声波振动、电磁搅拌等,也可使晶粒细化。

因为一般地说,在室温下,细晶粒金属具有较高的强度和韧性,所以需要细化晶粒。

扩展资料:

理想的铸锭组织是铸锭整个截面上具有均匀、细小的等轴晶,这是因为等轴晶各向异性小,加工时变形均匀、性能优异、塑性好,利于铸造及随后的塑性加工。要得到这种组织,通常需要对熔体进行细化处理。

都与过冷度有关,过冷度增加,形核率与长大速度都增加,但两者的增加速度不同,形核率的增长率大于长大速度的增长率。在一般金属结晶时的过冷范围内,过冷度越大,晶粒越细小。

铝及铝合金铸锭生产中增加过冷度的方法主要有降低铸造速度、提高液态金属的冷却速度、降低浇注温度等。

但是,如果没有较多的游离晶粒的存在,增加激冷作用反而不利于细晶粒区的形成和扩大。

动态晶粒细化就是对凝固的金属进行振动和搅动,一方面依靠从外面输入能量促使晶核提前形成,另一方面使成长中的枝晶破碎,增加晶核数目。当前已采取的方法有机械搅拌、电磁搅拌、音频振动及超声波振动等。

利用机械或电磁感应法搅动液穴中熔体,增加了熔体与冷凝壳的热交换,液穴中熔体温度降低,过冷带增大,破碎了结晶前沿的骨架,出现了大量可作为结晶核的枝晶碎块,从而使晶粒细化。

1.晶界上有界面能的作用,因此晶粒形成一个在几何学上与肥皂泡相似的三维阵列。

2.晶粒边界如果都具有基本上相同的表面张力,晶粒呈正六边形

3.在晶界上的第二类夹杂物(杂质或气泡),如果它们在烧结温度下不与主晶相形成液相,则将阻碍晶界移动。

在烧结体内晶界移动有以下七种方式: 气孔靠晶格扩散移动; 气孔靠表面扩散移动; 气孔靠气相传递; 气孔靠晶格扩散聚合; 气孔靠晶界扩散聚合; 单相晶界本征迁移; 存在杂质牵制晶界移动。

参考资料:百度百科——晶粒细化

温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2019-10-16

1、冶金处理细化晶粒

铸造过程中传统的晶粒细化方法主要是通过添加形核剂进行变质处理来实现,通过提供大量的弥散质点促进非均匀形核,使钢液凝固后获得更多的细小晶粒。

此外,合金化也可以有效地细化钢铁的晶粒:一方面是某些元素,例如Mn、Cr等,可以降低相变温度,细化晶粒并细化相变过程中或相变后析出的微合金碳氮化合物;另一方面是某些强碳氮化合元素与钢中的碳或氮形成微纳米级的化合物,对晶粒的长大起到强烈的阻碍作用,同时也促进形成大量的非均匀晶核以细化晶粒。

2、形变热处理细化晶粒

形变热处理是一种将固态相变或再结晶与机械变形有机结合在一起进行材料热处理的手段,对材料组织细化极为有效。利用形变热处理,可以同时达到成型和改善显微组织的双重目的,使工件获得优异的强度和韧性。

3、磁场或电场细化晶粒

强磁场或电场是影响金属相变的重要因素:由于不同相具有不同的磁导率或电介质常数,电磁场将影响其吉布斯(Gibbs)自由能进而影响到y-a相变温度。在热轧过程中采用间断施加磁场或者电场的方法可以改变AC3温度,反复进行奥氏体-铁素体相变,促进铁素体晶粒细化。外加磁场或电场将增大淬火冷却时从奥氏体向马氏体转变的相变驱动力,可获得与增大过冷度相同的效果,从而增加马氏体的形核率,降低其生长速度,达到组织细化的目的。

4、球磨细化晶粒

球磨法是指将大块物料放入高能球磨机中,利用介质和物料之间相互研磨和冲击使物料细化,其产物一般为粉料,形状不规则,表面也可能与介质发生化学反应而受污染,粒子因受到多次变形、硬化和断裂,会有大量缺陷存在,因而表面缺陷多且活性极高。

5、非晶晶化细化晶粒

非晶晶化法通常由非晶态固体的获得和晶化2个过程组成:非晶态固体可通过熔体激冷、高速直流溅射等技术制备,晶化通常采用等温退火方法实现,近年来还发展了分级退火、脉冲退火等方法。

6.强塑性变形细化晶粒

强塑性变形细化晶粒法目前有等通道挤压法,高压扭转法,累积叠轧焊法,多向压缩法。但每种方法都有一定的局限,且可加工的尺寸都有限。

扩展资料:

晶粒度检测的方法

(1)渗碳法。将试样在930℃±10℃保温6h,使试样表面获得1mm以上的渗碳层。渗碳后将试样炉冷到下临界温度以下,在渗碳层中的过共析区的奥氏体晶界上析出渗碳体网,经磨制和浸蚀后便显示出奥氏体晶粒边界。这种方法适于渗碳钢。

(2)氧化法。将试样检验面抛光,然后将抛光面朝上放入加热炉中,在860℃±10℃加热1h,然后淬入水中或盐水中,经磨制和浸蚀后便显示出由氧化物沿晶界分布的原奥氏体晶粒形貌。这种方法适用于碳含量为0.35%~0.60%的碳钢和合金钢。

(3)网状铁素体法。将碳含量不大于0.35%的试样在900℃±10℃、碳含量大于0.35%的试样在860℃±10℃加热30min,然后空冷或水冷,经磨制和浸蚀后沿原奥氏体晶界便显示出铁素体网。这种方法适用于碳含量为0.25%~0.60%的碳钢和碳含量为0.25%~0.50%的合金钢。

(4)直接淬火法。将碳含量不大于0.35%的试样在900℃±10℃、碳含量大于0.35%的试样在860℃±10℃加热60min,然后淬火,得到马氏体组织,经磨制和浸蚀后显示奥氏体晶界。为了清晰显示晶界,在腐蚀前可在550℃±10℃回火1h。这种方法适用于直接淬火硬化钢。

(5)网状渗碳体法。将试样在820℃±10℃加热,保温30min以上,炉冷到下临界点温度以下,使奥氏体晶界上析出渗碳体网。经磨制和浸蚀后显示奥氏体晶粒形貌。这种方法适用于过共析钢。

(6)网状珠光体法。采用适当尺寸的棒状试样,加热到规定的淬火温度,保温后将试样的一端在水中淬火,经磨制和浸蚀后可以看到细珠光体网显示出的奥氏体晶粒形貌。这种方法适用于其他方法不能显示的过共析钢。

参考资料:百度百科-晶粒细化

本回答被网友采纳
第2个回答  2020-02-16

细化晶粒的方法有:降低熔液的浇注温度、变质处理、震动搅拌等方法。

1、增大过冷度可以提高形核率与生长速率的比值,从而使晶粒数增大,晶粒细化。 增大过冷度,实际上是提高金属凝固时的冷却速度,这可以通过采用吸热能力强、导热性能好的铸型(如金属型),以及降低熔液的浇注温度等措施来实现。这种方法对于小型铸件或薄壁铸件效果较好,但对于大型铸件就不合适了。

2、变质处理就是向金属液体中加入一些细小的形核剂(又称为孕育剂或变质剂),作为非均匀形核的基底,从而使晶核数大量增加,晶粒显著细化。 变质处理是工业生产中广泛使用的方法。

3、震动、搅拌在浇注和结晶过程中进行机械振动或搅拌,也可以显著细化晶粒。这是因为振动和搅拌能够向金属液体中输入额外能量、增大能量起伏,从而更加有效地提供形核所需要的形核功。

另一方面,振动和搅拌可以使枝晶碎断,增大晶核数量 方法有机械法、电磁法、超声波法等。

扩展资料

影响细化效果的因素:

1、细化剂的种类。细化剂不同,细化效果也不同。实践证明,Al-Ti-B比Al-Ti更为有效。

2、细化剂的用量。一般来说,细化剂加入越多,细化效果越好。但细化剂加入过多易使熔体中金属间化合物增多并聚集,影响熔体质量。因此在满足晶粒度的前提下,杂质元素加入的越少越好。

从包晶反应的观点出发,为了细化晶粒,Ti的添加量应大于0.15%,但在实际变形铝合金中,其他组元(如Fe)以及自然夹杂物(如Al2O3)亦参与了形成晶核的作用,一般只加入0.01%-0.06%便足够了。

本回答被网友采纳
第3个回答  2011-01-01
哈 我刚考完~

(1)在液态金属结晶时,提高冷却速度,增大过冷度,来促进自发形核。晶核数量愈多,则晶粒愈细。
(2)在金属结晶时,有目的地在液态金属中加入某些杂质,做为外来晶核,进行非自发形核,以达到细化晶粒的目的,此方法称为变质处理。这种方法在工业生产中得到了广泛的应用。如铸铁中加入硅、钙等。
(3)在结晶过程中,采用机械振动、超声波振动、电磁搅拌等,也可使晶粒细化。本回答被提问者采纳
第4个回答  2013-12-19
细化晶粒的基本做法是:在晶粒的形成过程中增加形核率与减小晶粒的长大速度来现实,如晶粒已成形,设法打碎原来的粗大晶粒。因而可考虑以下方法:
1.适当加大过冷度(可适当增加冷却速度来现实,但不能过快);
2.加入形核剂,如加入钛、铌、铬等等以增加形核率;
3.振动处理:可采用机械振动,超声波振动来细化晶粒(类似于把原来已形成的粗大枝晶打碎);
4.通过热处理:以钢为例,将钢进行加热奥氏体化(具体的加热温度由材料的化学成份而定),奥氏化化刚完成时得到细小晶粒(注意不能保温过长时间,以防其又变成粗大晶粒,保温时间可从工件材料、加热炉效率、工件截面等方面进行估算),之后以适当的速度冷却。即可通过退火、正火等方式进行。
由于不知你是在哪种情况之下考虑细化晶粒,可能针对性不强。
相似回答