构造法在数学中的应用

如题所述

例1 如何在可构造性意义下来定义实数概念?
直觉数学者的具体做法是:首先引进所谓“属种”的概念以取代康托尔意义下的集合概念。进而布劳威又引进了“选择序列”的概念,并以“有理数选择序列”取代古典分析中的有理数柯西序列概念,称之为“实数生成子”。相应于古典分析中把实数定义为有理数柯西序列等价类,可构造意义下的单个实数被定义为实数生成子的一个等价属种。如上所见,建立可构造性实数概念没有实质性困难,其原因就在于柯西—魏尔斯特拉斯的整个极限论建基于潜无限观念。因而在实质上,直觉数学者在此不过是在能行性的要求下重新陈述柯西序列而已。
现代构造数学者的作法是:为了构造一个实数,我们必须给出一个有限的方法,将每一个正整数n转化为一个有理数xn′,并且使得x1′,x2′,…是一个柯西序列,它收敛于所要构造的实数。我们还必须对这一序列收敛速度给出明确估计。可见,现代构造数学已经从那些似乎把直觉数学者扼杀的概念(诸如选择序列、属种概念)中超脱出来。
例2 关于代数基本定理的构造性证明。
代数基本定理的经典说法为:任何复系数的非常数多项式f至少有一个复根。(1)
对于(1)最著名的传统证明是,假定f不取零值,把刘维尔定理用于f的倒数,得出结论1/f是常数,因此f是常数,这一矛盾便完成了证明。
但是构造数学者会争议说,这样做所证明的并不是基本定理,而是如下较弱的论断:
不取零值的复数上多项式是常数。(2)
同时上述证明,也没有提示替多项式找根的方法。
代数基本定理的构造性说法是布劳威给出的:
有一个适用于任何复系数的非常数多项式f的有限方法,我们能够用以计算f的根。(3)
现在给出布劳威对于首项系数为1的多项式的代数基本定理的证明:他首先证明了f可以假定为高斯数域Q〔i〕上的正数阶多项式,然后,再选择半径R足够大,使得f(x)被它的首项所支配,接着利用f围着以O为心,R为半径的圆周所绕的圈数等于f的阶数这一事实,他构造了一个高斯数z,使f(z)极小,而f′(z)相对地大。最后利用牛顿—拉夫森迭代,构造出f的复根。
比较构造性证明与传统证明,可以看出,虽然布劳威的证明确实是比使用刘维尔定理的证明更长,但构造性证明比传统证明给出的“信息量”要多得多。比如布劳威的方法能求出复数上任何给定的正次数的首项系数为1的多项式的根。特别地,用他的证明办法,你可以为100阶多项式找到根,而传统证明根本没有涉及找根的方法。
比肖泊在书中写道:每个经典的定理都提出了一个挑战:找出一个构造性的说法,并给它以一个构造性的证明。但事实上,许多经典的定理,看来不象会有任何构造性的说法与证明,例如波尔查诺—魏尔斯特拉斯定理,zorn引理等就是这样。
温馨提示:答案为网友推荐,仅供参考
相似回答